• Title/Summary/Keyword: 감쇠중력모형

Search Result 3, Processing Time 0.018 seconds

Modeling of Circulation for the East Sea Using Reduced Gravity Models (감쇠중력 모형을 이용한 동해의 순환모델링)

  • Choi, Byung-Ho;Wang, Ou
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.3
    • /
    • pp.105-114
    • /
    • 1997
  • Wind is one of the main forcing contributing the circulation of the East Sea. By using 1.5-layer and 2.5-layer reduced gravity models, circulation in the East Sea is simulated. The bifurcation of the Tsushima Warm Current (TWC), the separation of East Korea Warm Current (EKWC) from the east coast of Korea, the Nearshore Branch of TWC, and the cyclonic gyres stretched from the East Korea Bay to the northern half of the East Sea are compared well with the schematic map. The features of the upper and the lower layer are very similar except for those of the central region. The Polar Front is the separating line of two different features. The main feature of northern part of the East Sea, north of the Polar Front is cyclonic gyres, which are composed of three cyclonic gyres in most seasons. North Korean Cold Current (NKCC) and Liman Cold Current (LCC) are the nearshore part of these cyclonic gyres. In the south of the Polar Front the current systems of both layers are anticyclonic in most seasons, except that those of the upper layer in winter and spring are not anticyclonic. Along the coast of Korea and Russia, the velocity structure is barotropic, while that of the central region is baroclinic. The effects due to the seasonal variations of wind stress and local Ekman suction/pumping are studied by imposing the domain with modified wind stress. which is spatial mean with temporal variations and temporal mean with spatial variations. It is found that the local Ekman suction/pumping due to wind stress curl is important to the formation of the cyclonic gyres in the western and the northwestern region of the East Sea.

  • PDF

A Comparative Study of 2-Dimensional Turbulence Models for Thermal Discharge (2차원 온배수 난류모형의 비교연구)

  • Choi, Hung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.3
    • /
    • pp.225-235
    • /
    • 1999
  • For a comparative evaluation of three turbulence models in the analyses of thermal discharge behavior into a crossflow, a 2-dimemsional near-field numerical model is developed. The selected models are k-$\varepsilon$ and k-ι turbulence models as a 2-equation turbulence model and a 4-equation turbulence model in which the transport equations for mean of the temperature fluctuation squared and its dissipation rate for the consideration of buoyancy production and turbulent heat flux terms are added to a k-$\varepsilon$ turbulence model. The developed models are applied to a steady flow in an open channel with simple geometry and the numerical results agree with the existing experimental data. Numerical results of buoyancy induced gravitational lateral spreading by 4-equation turbulence model agree with the experimental data better than those of 2-quation turbulence models. The flow patterns by 4 and 2-equation turbulence models are similar.

  • PDF

Verification of Nonlinear Numerical Analysis for Seismic Response of Single Degree of Freedom Structure with Shallow Foundation (비선형 수치해석을 통한 단자유도 얕은기초 구조물의 지진 응답특성 검증)

  • Choo, Yun-Wook;Lee, Jin-Sun;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.29-40
    • /
    • 2013
  • Seismic response of single degree of freedom system supported by shallow foundation was analyzed by using nonlinear explicit finite difference element code. Numerical analysis results were verified with dynamic centrifuge test results of the same soil profile and structural dimensions with the numerical analysis model at a centrifugal acceleration of 20 g. Differences between the analysis and the test results induced by the boundary conditions of control points can be reduced by adding additional local damping to the natural born cyclic hysteretic damping of the soil strata. The analysis results show good agreement with the test results in terms of both time histories and response spectra. Thus, it can be concluded that the nonlinear explicit finite difference element code will be a useful technique for estimating seismic residual displacement, earthpressure etc. which are difficult to measure during laboratory tests and real earthquake.