• Title/Summary/Keyword: 감쇠변수 평가

Search Result 62, Processing Time 0.017 seconds

CT-Derived Deep Learning-Based Quantification of Body Composition Associated with Disease Severity in Chronic Obstructive Pulmonary Disease (CT 기반 딥러닝을 이용한 만성 폐쇄성 폐질환의 체성분 정량화와 질병 중증도)

  • Jae Eun Song;So Hyeon Bak;Myoung-Nam Lim;Eun Ju Lee;Yoon Ki Cha;Hyun Jung Yoon;Woo Jin Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.5
    • /
    • pp.1123-1133
    • /
    • 2023
  • Purpose Our study aimed to evaluate the association between automated quantified body composition on CT and pulmonary function or quantitative lung features in patients with chronic obstructive pulmonary disease (COPD). Materials and Methods A total of 290 patients with COPD were enrolled in this study. The volume of muscle and subcutaneous fat, area of muscle and subcutaneous fat at T12, and bone attenuation at T12 were obtained from chest CT using a deep learning-based body segmentation algorithm. Parametric response mapping-derived emphysema (PRMemph), PRM-derived functional small airway disease (PRMfSAD), and airway wall thickness (AWT)-Pi10 were quantitatively assessed. The association between body composition and outcomes was evaluated using Pearson's correlation analysis. Results The volume and area of muscle and subcutaneous fat were negatively associated with PRMemph and PRMfSAD (p < 0.05). Bone density at T12 was negatively associated with PRMemph (r = -0.1828, p = 0.002). The volume and area of subcutaneous fat and bone density at T12 were positively correlated with AWT-Pi10 (r = 0.1287, p = 0.030; r = 0.1668, p = 0.005; r = 0.1279, p = 0.031). However, muscle volume was negatively correlated with the AWT-Pi10 (r = -0.1966, p = 0.001). Muscle volume was significantly associated with pulmonary function (p < 0.001). Conclusion Body composition, automatically assessed using chest CT, is associated with the phenotype and severity of COPD.

The Sensitivity Analysis according to Observed Frequency of Daily Composite Insolation based on COMS (관측 빈도에 따른 COMS 기반의 일 평균 일사량 산출의 민감도 분석)

  • Kim, Honghee;Lee, Kyeong-Sang;Seo, Minji;Choi, Sungwon;Sung, Noh-Hun;Lee, Darae;Jin, Donghyun;Kwon, Chaeyoung;Huh, Morang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.733-739
    • /
    • 2016
  • Insolation is an major indicator variable that can serve as an energy source in earth system. It is important to monitor insolation content using remote sensing to evaluate the potential of solar energy. In this study, we performed sensitivity analysis of observed frequency on daily composite insolation over the Korean peninsula. We estimated INS through the channel data of Communication, Ocean and Meteorological Satellite (COMS) and Cloud Mask which have temporal resolution of 1 and 3 hours. We performed Hemispherical Integration by spatial resolution for meaning whole sky. And we performed daily composite insolation. And then we compared the accuracy of estimated COMS insolation data with pyranometer data from 37 points. As a result, there was no great sensitivity in the daily composite INS by observed frequency of satellite that accuracy of the calculated insolation at 1 hour interval was $28.6401W/m^2$ and 3 hours interval was $30.4960W/m^2$. However, there was a great difference in the space distribution of two other INS data by observed frequency of clouds. So, we performed sensitivity analysis with observed frequency of clouds and distinction between the two other INS data. Consequently, there was showed sensitivity up to $19.4392W/m^2$.