• Title/Summary/Keyword: 감쇄물질

Search Result 32, Processing Time 0.02 seconds

Longest First Binary Search on Prefix Length for IP Address Lookup (최장 길이 우선 검색에 기초한 프리픽스 길이에 따른 이진 IP 검색 구조)

  • Chu Ha-Neul;Lim Hye-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8B
    • /
    • pp.691-700
    • /
    • 2006
  • Based on the destination IP address of incoming packets, the Internet routers determine next hops and forward packets toward final destinations through If address lookup. The bandwidth of communication links increases exponentially fast as well as the routing table size grows significant as the number of single host networks attached to the Internet increases. Since packets should be processed at wire-speed, the increased link speed reduces the processing time of a packet in routers, and hence more efficient and fast IP address lookup algorithms and architectures are required in the next generation routers. Most of the previous IP lookup schemes compare routing prefixes of shorter length first with a given input IP address. Since IP address lookup needs to find the most specific route of the given input, search continues until the longest matched prefix is found while it keeps remembering the current test matching prefix. In this paper, based on binary search on prefix length, we proposed a new IP address lookup algorithm which compares longer prefixes first. The proposed scheme is consisted of multiple tries with prefixes on leaves only. The trie composed of the longest prefixes is primarily searched whether there is a match with the given input. This processing is repeated for the trio of the next longer prefixes until there finds a match. Hence the proposed algorithm provides the fast search speed. The proposed algorithm also provides the incremental update of prefixes while the previous binary search on length scheme does not provide the incremental update because of pre-processing requirement. In this paper, we performed extensive simulations and showed the performance comparisons with related works.

Inhomogeneity correction in on-line dosimetry using transmission dose (투과선량을 이용한 온라인 선량측정에서 불균질조직에 대한 선량 보정)

  • Wu, Hong-Gyun;Huh, Soon-Nyung;Lee, Hyoung-Koo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.3
    • /
    • pp.139-147
    • /
    • 1998
  • Purpose: Tissue inhomogeneity such as lung affects tumor dose as well as transmission dose in new concept of on-line dosimetry which estimates tumor dose from transmission dose using the new algorithm. This study was carried out to confirm accuracy of correction by tissue density in tumor dose estimation utilizing transmission dose. Methods: Cork phantom (CP, density $0.202\;gm/cm^3$) having similar density with lung parenchyme and polystyrene phantom (PP, density $1.040\;gm/cm^3$) having similar density with soft tissue were used. Dose measurement was carried out under condition simulating human chest. On simulating AP-PA irradiation, PPs with 3 cm thickness were placed above and below CP, which had thickness of 5, 10, and 20 cm. On simulating lateral irradiation, 6 cm thickness of PP was placed between two 10 cm thickness CPs additional 3 cm thick PP was placed to both lateral sides. 4, 6, and 10 MV x-ray were used. Field size was in the range of $3{\times}3$ cm through $20{\times}20$ cm, and phantom-chamber distance (PCD) was 10 to 50 cm. Above result was compared with another sets of data with equivalent thickness of PP which was corrected by density. Result: When transmission dose of PP was compared with equivalent thickness of CP which was corrected with density, the average error was 0.18 (${\pm}0.27$) % for 4 MV, 0.10 (${\pm}0.43$) % for 6 MV, and 0.33 (${\pm}0.30$) % for 10 MV with CP having thickness of 5 cm. When CP was 10 cm thick, the error was 0.23 (${\pm}0.73$) %, 0.05 (${\pm}0.57$) %, and 0.04 (${\pm}0.40$) %, while for 20 cm, error was 0.55 (${\pm}0.36$) %, 0.34 (${\pm}0.27$) %, and 0.34 (${\pm}0.18$) % for corresponding energy. With lateral irradiation model, difference was 1.15 (${\pm}1.86$) %, 0.90 (${\pm}1.43$) %, and 0.86 (${\pm}1.01$) % for corresponding energy. Relatively large difference was found in case of PCD having value of 10 cm. Omitting PCD with 10 cm, the difference was reduced to 0.47 (${\pm}$1.17) %, 0.42 (${\pm}$0.96) %, and 0.55 (${\pm}$0.77) % for corresponding energy. Conclusion When tissue inhomogeneity such as lung is in tract of x-ray beam, tumor dose could be calculated from transmission dose after correction utilizing tissue density.

  • PDF