• Title/Summary/Keyword: 감성인식시스템

Search Result 150, Processing Time 0.026 seconds

The Development of Sensibility Recognition Model based on Multi Layer Perceptron (MLP에 기반한 감성인식 모델개발)

  • Lee Dong-Hun;Kim Dae-Uk;Sim Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.172-175
    • /
    • 2006
  • 최근 다양한 게임 문화가 급속도로 성장함에 따라 보다 새로운 개념의 게임을 찾는 사용자의 요구가 증대 되고 있다. 기존의 게임은 획일화 되고 일방적인 사용자 환경으로 사용자가 일방적으로 게임을 하는 방식이었다. 때문에 사용자의 감성 데이터를 이용하여 사용자에게 게임 환경이 맞춰지는 "사용자 맞춤형" 게임은 기존의 게임에서 보다 진보한 새로운 방식이 될 것이다. 이 방식을 사용하기 위해서는 우선 사용자의 생체 데이터나 감성데이터를 포함한 뇌파를 획득하는 방법이 필요하며 다음으로 획득된 뇌파를 통하여 현재 사용자의 감성 상태를 규명하는 패턴인식 기법이 중요한 문제가 된다. 본 논문에서는 뇌파를 통하여 현재 사용자의 감성 상태를 규명하고 인식할 수 있는 패턴인식 기법으로 Multi Layer Perceptron(MLP)을 사용한 감성인식모델을 제안한다. 본 논문에서 제안한 감성인식 모델의 실험을 위하여 특정 공간 내에서 여러 사용자의 감정별 뇌파를 측정하고 실험을 통하여 획득한 데이터로 감정 DB를 구축한다. 구축된 DB를 본 논문에서 제안한 감성인식 모델로 학습을 하고 학습이 완료된 후 새로운 사용자의 뇌파를 입력 받은 후 현재 사용자의 감성을 인식한다. 감성인식과 더불어 집중도를 측정 하는 실험도 병행 한다. 본 논문에서 제안한 감성인식 모델의 성능을 측정하기 위하여 사용자의 수에 따른 감성 인식률을 측정함으로서 본 논문에서 제안한 감성인식 모델의 성능을 확인한다.

  • PDF

Emotion Recognition Using The Color Image Scale in Clothing Images (의류 영상에서 컬러 영상 척도를 이용한 감성 인식)

  • Lee, Seul-Gi;Woo, Hyo-Jeong;Ryu, Sung-Pil;Kim, Dong-Woo;Ahn, Jae-Hyeong
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.1-6
    • /
    • 2014
  • Emotion recognition is defined as that machines automatically recognize human emotions. Because the human emotions is very subjective, it is impossible to measure objectively. Therefore, the goal of emotion recognition is to obtain a measure that is agreed by as many people as possible. Emotion recognition in a image is implemented as the method that matches human emotions to the various features of the image. In the paper, we propose an emotion recognition system using color features of clothing image based on the Kobayashi's image scale. The proposed system stores colors of image scale into a database. And extracted major colors from a input clothing image are compared with those in the database. The proposed system can obtain three emotions maximally. In order to evaluate the system performance 70 observers are tested. The test results shows that recognized emotions of the proposed system are very similar to the observers emotions.

Emotion Recognition using Color Combination in Clothing Image (색상조합 정보를 이용한 의류영상에서의 감성인식)

  • Lee, seul-gi;Woo, hyo-jeong;Kim, dong-woo;Song, young-jun;Ahn, jae-hyeong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2013.05a
    • /
    • pp.287-288
    • /
    • 2013
  • 현재 많은 사람들이 감성 인식에 대한 관심을 보이고 있다. 감성은 사람마다 다를 수 있어 모두를 만족시키기는 어렵기 때문에 다수의 사람들에게 공감을 얻는 것이 감성 인식의 목표이다. 영상에서의 감성 인식 방법은 영상의 여러 가지 특징을 이용하여 감성과 매칭하여 구현된다. 본 논문에서는 고바야시의 Image Scale을 참고하여 의류 영상에서 색상 특징을 이용한 감성 인식 시스템을 제안한다. 제안 방법은 고바야시의 Image Scale을 참고하여 색상 정보를 데이터화하고, 의류 영상에서 추출한 색상과 비교하여 감성 인식하는 것이다. 이를 통하여 의류 영상에서의 감성을 인식할 수 있으며, 시스템의 다양한 응용이 가능하다.

  • PDF

Pattern Classification of Bio-information To Percept Human Emotion (감성 인식을 위한 생체 신호 패턴 분류)

  • Whang Se-Hee;Park Chang-Hyun;Sim Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.385-388
    • /
    • 2005
  • 감성이란 외부의 자극에 대해 직관적이고 반사적으로 발생하는 저절로 반응하는 현상이다. 감성은 살아온 사회$\cdot$문화적 배경에 따라 흑은 현재 상태에 따라서 다르게 나타난다. 하지만 다소 개인적인 차이가 있을 수 있을지라도 개인이 속한 사회에 따라서 비슷한 상황 아래서는 비슷한 유형의 반응이 나타난다. 현재 감성 인식을 위해서 개인의 행동이나 신체적인 표현을 이용한 감성 인식 연구가 진행 중이다. 이러한 방법은 감성을 표현하는 방식에서 개인차가 커지면 효용성이 떨어질 수밖에 없다. 우리가 거짓말 탐지기를 사용하는 것처럼 본 논문에서는 감정에 따라 달라지는 개인의 생체 신호를 이용해서 감성 인식을 하고자 한다. 이를 위해서 감성에 따른 여러 가지 생체 신호를 추출하고 감성 인식을 위한 생체 신호의 특징점을 파악하고 패턴분류를 하고자 한다.

  • PDF

A Study on The Improvement of Emotion Recognition by Gender Discrimination (성별 구분을 통한 음성 감성인식 성능 향상에 대한 연구)

  • Cho, Youn-Ho;Park, Kyu-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.107-114
    • /
    • 2008
  • In this paper, we constructed a speech emotion recognition system that classifies four emotions - neutral, happy, sad, and anger from speech based on male/female gender discrimination. At first, the proposed system distinguish between male and female from a queried speech, then the system performance can be improved by using separate optimized feature vectors for each gender for the emotion classification. As a emotion feature vector, this paper adopts ZCPA(Zero Crossings with Peak Amplitudes) which is well known for its noise-robustic characteristic from the speech recognition area and the features are optimized using SFS method. For a pattern classification of emotion, k-NN and SVM classifiers are compared experimentally. From the computer simulation results, the proposed system was proven to be highly efficient for speech emotion classification about 85.3% regarding four emotion states. This might promise the use the proposed system in various applications such as call-center, humanoid robots, ubiquitous, and etc.

Fuzzy Inference-Based Human Emotion Recognition of Color Image (퍼지 추론을 기반으로 한 칼라 영상에서의 감성 인식)

  • 정근호;나인호;최연성;양해권;주영훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.528-531
    • /
    • 2004
  • 본 논문에서는 칼라 영상을 이용하여 인간의 감성을 인식할 수 있는 방법을 제안한다. 먼저 칼라 영상으로부터 피부색 추출방법을 이용하여 얼굴을 추출한다 그 다음, 추출된 얼굴 영상으로부터 인간 얼굴의 특징 점(눈썹, 눈, 코, 입)들을 추출하는 방법과 각 특징 점들 간의 구조적인 관계로부터 인간의 감성(기쁨, 놀람, 슬픔, 분노)을 인식하는 방법을 제안한다. 본 논문에서 제안한 방법은 퍼지 추론을 기반으로 하여 인간의 감성을 인식한다. 마지막으로, 제안된 방법은 실험을 통해 그 응용 가능성을 확인한다.

  • PDF

A Study on the Construction of Emotion Level Recognition System for Repeated Computational Stresses (반복 연산 스트레스의 레벨 인식 시스템 구성에 관한 연구)

  • 박광훈;김승태;이윤진;장중식;고한우;김동선;신동규
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.11a
    • /
    • pp.145-149
    • /
    • 1999
  • 본 연구에서는 20 대 남자 대학생 45 명에게 세단계의 난이도를 갖는 덧셈연산을 수행하게 하여 반복 연산 스트레스를 유발시켰고, 각각의 피검자들로부터 생체신호를 측정하였다. 측정된 생체신호로부터 8 개의 감성 파라메터를 추출하였다. 연산스트레스의 감성지수화를 위하여 세단계의 감성지수 인식 시스템을 구성하였으며 각 단계의 감성지수 판별을 위하여 선형 판별 알고리즘을 이용하였다. 판별성능 분석은 Cross Validation 을 통하여 수행하였으며 연산스트레스의 감성지수 인식율은, 학습용 데이타에서는 77.66% Cross Validation 에서는 63.02%의 일반화된 감성지수 인식성능을 보였다.

  • PDF

Implementation of Emotion Recognition System using Internet Phone (인터넷 폰을 이용한 감성인식 시스템 구현)

  • Kwon, Byeong-Heon;Seo, Burm-Suk
    • Journal of Digital Contents Society
    • /
    • v.8 no.1
    • /
    • pp.35-40
    • /
    • 2007
  • In this paper, we introduces contents about the emotion recognition and character display expressing emotion. In this paper, we proposes on things like how to search characteristic parameters expressing user emotion, how to deduce emotion through pattern matching algorithm. Also, we implemented display platform recognizing the caller's emotion over internet phone. It display character animations expressing emotion as the result deduced by emotion recognition algorithm.

  • PDF

The Artificial Color-Emotion Process Based on Fuzzy Reasoning and Immune Mechanism (퍼지추론과 면역 메커니즘을 기반으로 한 인공 색채-감성처리)

  • 손창식;정환묵
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.05a
    • /
    • pp.206-209
    • /
    • 2003
  • 본 논문에서는 퍼지추론과 면역 네트워크의 세 가지 메커니즘을 바탕으로 인간의 외부 자극(색상정보)에 따른 내부 감성상태를 인식할 수 있는 방법을 제안한다. 인간의 내부 감성상태는 심리학에서 많이 사용하는 색채심리를 바탕으로 추론을 하였으며 추론된 값은 색상 정보의 정도에 따른 감성상태이다. 이러한 감성상태의 값들 간에 유사성을 계산하여 면역 네트워크에 세 가지 메커니즘에 적용하여 인공적인 감성상태를 인식할 수 있는 방법을 나타내었다.

  • PDF

A Study on Robust Speech Emotion Feature Extraction Under the Mobile Communication Environment (이동통신 환경에서 강인한 음성 감성특징 추출에 대한 연구)

  • Cho Youn-Ho;Park Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.269-276
    • /
    • 2006
  • In this paper, we propose an emotion recognition system that can discriminate human emotional state into neutral or anger from the speech captured by a cellular-phone in real time. In general. the speech through the mobile network contains environment noise and network noise, thus it can causes serious System performance degradation due to the distortion in emotional features of the query speech. In order to minimize the effect of these noise and so improve the system performance, we adopt a simple MA (Moving Average) filter which has relatively simple structure and low computational complexity, to alleviate the distortion in the emotional feature vector. Then a SFS (Sequential Forward Selection) feature optimization method is implemented to further improve and stabilize the system performance. Two pattern recognition method such as k-NN and SVM is compared for emotional state classification. The experimental results indicate that the proposed method provides very stable and successful emotional classification performance such as 86.5%. so that it will be very useful in application areas such as customer call-center.