감성 분석(sentiment analysis)은 자연어 문장에 나타나는 감정 상태나 주관적인 의견을 분석하는 작업이다. 최근에는 자연어 처리(Natural Language Processing) 작업에서 딥러닝 기반의 모델이 좋은 성능을 보여주고 있다. 하지만, 모델의 복잡한 구조 때문에 모델이 어떠한 근거(rationale)로 판단하였는지 해석하기 어려운 문제가 있다. 모델이 좋은 성능을 보여도 예측에 관한 판단 근거가 없으면 결과를 해석하기 어렵고, 모델에 대한 신뢰가 떨어진다. 본 논문에서는 한국어 감성 분석 작업에 대해 사후 해석 모델을 이용하여 모델의 예측 결과에 대한 근거를 추출하고, 추출한 근거 정보를 이용한 근거 임베딩을 사용하여 근거 정보를 통합하는 방법이 감성 분석 모델의 성능을 개선함을 보인다.
본 연구에서는 한국어 SNS 대화에서 나타나는 문장들의 감성을 분석하고자 신경망 모델을 활용하여 시스템을 구축하였다. 현재 해외 SNS 감성분석에 대한 연구는 많이 진행된 상황이지만, 한국어 범용 대화에 대해 적절한 모델이 무엇인지는 연구가 부족한 실정이었다. 따라서 한국어 대화에 적합한 모델을 채택해 보다 정확한 감성분석을 수행하였다. 이를 위해 한국어 SNS 대화 데이터에 대해 신경망 모델을 적용하여, 82% 성공률로 기존 모델 72% 성공률보다 훨씬 더 우수한 성능을 보였다. 또한 본 연구의 결과는 악플 추적 등 실용적인 분야에도 기여할 수 있다고 사료된다.
딥러닝 기법이 발달함에 따라 텍스트에 내재된 의미 및 구문을 어떠한 벡터 공간 상에 표현하기 위한 언어 모델이 활발히 연구되어 왔다. 이를 통해 자연어 처리를 기반으로 하는 감성 분석 및 문서 분류, 기계 번역 등의 분야가 진보되었다. 그러나 대부분의 언어 모델들은 텍스트에 나타나는 단어들의 일반적인 패턴을 학습하는 것을 기반으로 하기 때문에, 문서 요약이나 스토리텔링, 의역된 문장 판별 등과 같이 보다 고도화된 자연어의 이해를 필요로 하는 연구들의 경우 주어진 텍스트의 주제 및 의미를 고려하기에 한계점이 있다. 이와 같은 한계점을 고려하기 위하여, 본 연구에서는 기존의 LSTM 모델을 변형하여 문서 주제와 해당 주제에서 단어가 가지는 문맥적인 의미를 단어 벡터 표현에 반영할 수 있는 새로운 언어 학습 모델을 제안하고, 본 제안 모델이 문서의 주제를 고려하여 문장을 자동으로 생성할 수 있음을 보이고자 한다.
본 연구에서는 승용차에서 사람들이 기기를 사용하기 위해 사용하는 기동어인 "Hi, KIA!"의 감성을 기계학습을 기반으로 분류가 가능한가에 대해 탐색하였다. 감성 분류를 위해 신남, 화남, 절망, 보통 총 4가지 감정별로 3가지 시나리오를 작성하여, 자동차 운전 상황에서 발생할 수 있는 12가지의 사용자 감정 시나리오를 제작하였다. 시각화 자료를 기반으로 총 9명의 대학생을 대상으로 녹음을 진행하였다. 수집된 녹음 파일의 전체 문장에서 기동어 부분만 별도로 추출하는 과정을 거쳐, 전체 문장 파일, 기동어 파일 총 두 개의 데이터 세트로 정리되었다. 음성 분석에서는 음향 특성을 추출하고 추출된 데이터를 svmRadial 방법을 이용하여 기계 학습 기반의 알고리즘을 제작해, 제작된 알고리즘의 감정 예측 정확성 및 가능성을 파악하였다. 9명의 참여자와 4개의 감정 카테고리를 통틀어 기동어의 정확성(60.19%: 22~81%)과 전체 문장의 정확성(41.51%)을 비교했다. 또한, 참여자 개별로 정확도와 민감도를 확인하였을 때, 성능을 보임을 확인하였으며, 각 사용자 별 기계 학습을 위해 선정된 피쳐들이 유사함을 확인하였다. 본 연구는 기동어만으로도 사용자의 감정 추출과 보이스 인터페이스 개발 시 기동어 감정 파악 기술이 잠재적으로 적용 가능한데 대한 실험적 증거를 제공할 수 있을 것으로 기대한다.
한국어 감성 분류 작업은 챗봇, 사용자의 물건 구매 평 분석 등 실 서비스에서 사용되고 있으며, 현재 딥러닝 기술의 발달로 높은 성능을 가진 신경망 모델을 활발히 사용하여 감성 분류 작업을 수행하고 있다. 하지만 신경망 모델은 입력 문장이 어떤 단어들로 인해 결과가 예측되었는지 해석하는 것이 쉽지 않으며, 최근 신경망 모델의 해석을 위한 모델 해석 방법들이 활발히 제안되어지고 있다. 본 논문에서는 모델 해석 방법 중 LIME 알고리즘을 이용하여 한국어 감성 분류 데이터 셋으로 학습된 모델들의 입력 문장 내 단어들 중 어떤 단어가 결과에 영향을 미쳤는지 해석하고자 한다. 그 결과, 85.23%의 성능을 보인 양방향 순환 신경망 모델의 해석 결과, 총 25,283개의 긍정, 부정 단어를 포함했지만, 상대적으로 낮은 성능을 보인 84.20%의 Transformer 모델의 해석 결과, 총 26,447개의 긍정, 부정 단어가 포함되어 있어 양방향 순환 신경망 모델보다 Transformer 모델이 신뢰할 수 있는 모델임을 확인할 수 있었다.
본 연구에서는 댓글(음식점/영화/모바일제품) 및 도메인이 없는 트위터 데이터에 대한 감성 분석을 수행하고, 각 문장에 대한 object(or aspect)와 opinion word를 추출하는 시스템을 개발하고 평가한다. 감성 분석을 수행하기 위해 Structural SVM 알고리즘과 Latent Structural SVM 알고리즘을 사용하여 비교 평가하였으며, 실험 결과 Latent Structural SVM이 더 좋은 성능을 보였으며, 구문 분석을 통해 분석된 VP, NP정보를 활용하여 object(aspect)와 opinion word를 추출할 수 있음을 보였다. 또한, 실제 서비스에 활용하기 위해 감성 탐지기를 개발하고 평가하였다.
본 연구는 주관적 안녕감이 긍정적인 사건을 인식하는 비율과 나아가 기억을 재구성하는 인지적 과정에 있어서 어떠한 영향을 미치는지 알아보기 위해 시행되었다. 199명의 학부생들이 일상적으로 일어날법한 긍정적인 사건과 부정적인 사건 40개를 기술한 문장들을 본 후 이에 대한 회상 과제와 재인 과제를 수행하였다. 먼저 사건을 기술한 문장을 본 후 긍정적인 사건과 부정적인 사건에 대한 비율을 응답하게 한 결과, 삶에 대한 만족도가 높은 참가자들이 긍정적인 문장의 비율이 월등히 높은 조건에서 긍정적인 사건의 비율을 실제보다 더 높게 보고하였으며, 또한 긍정적인 비율이 높은 조건에서 주관적 안녕감이 높은 참가자들은 긍정적인 문장을 더 많이 회상했다. 참가자들이 처음 보고한 긍정적인 사건의 비율과 실제 회상한 기억들 중 긍정적인 사건의 비율은 정적인 상관을 가졌다. 그러나 예상과는 달리 재인 과제에서는 참가자들은 주관적 안녕감 수준에 따라 유의미하게 차이나는 오류를 보이지 않았다. 마지막으로 이 연구의 이론적 함의와 후속 연구를 위한 제언이 논의되었다.
본 연구의 목적은 최근 확산되고 있는 국내 비대면 의료 서비스 애플리케이션의 서비스 속성과 소비자 반응을 정확히 평가하고 각 서비스간 차별성을 시각화하기 위한 방안을 모색하는 것이다. 이를 위해 국내에서 서비스 중인 주요 6개 비대면 진료 애플리케이션의 구글 플레이스토어 사용자 리뷰 데이터 총 2만 건을 수집하였다. 수집된 데이터에 대해 문장 단위로 분리한 후, BERTopic 모델링 기법을 적용하여 각 문장이 속한 서비스 속성에 대한 토픽을 도출하였다. 다음으로 미세조정된 KoBERT 모델을 통해 각 문장의 토픽에 대한 감성 점수를 예측하였다. 분석 결과, 사용자 리뷰로부터 애플리케이션 속성과 진료 속성 두 가지 범주 아래에서 각각 5개와 3개의 서비스 특성 토픽이 발견되었다. 애플리케이션 속성으로는 '예약 시스템', '사용 용이성', '재고 확인', '디자인', '안정성' 등이, 진료 속성으로는 '원격 의료적 속성', '편의성', '배송' 등이 도출되었다. 각 애플리케이션은 이러한 속성들에 대해 다른 수준의 감성 점수를 보였다. 주성분분석을 통해 속성별 감성 점수를 축약하여 2차원 공간 상의 포지셔닝 맵을 생성하였다. 결과적으로 본 연구는 비대면 진료 애플리케이션 사용자 리뷰 텍스트를 바탕으로 실증적 통계 방법과 텍스트 마이닝 기술을 접목하여 서비스 속성 도출, 감성 분석, 제품 포지셔닝 이라는 일련의 체계를 제시하고 있다. 이는 비대면 진료 애플리케이션의 서비스 품질과 소비자 반응을 객관적으로 진단할 수 있는 효과적인 방안이 될 것으로 기대된다.
최근 폭발적으로 증가하는 SNS서비스의 상업적으로 이용하려는 움직임이 활발하다. 따라서 본 논문은 실시간 SNS 환경에서 제조기업과 제품의 평판에 관련된 정보를 정확하게 분석 할 수 있는 방안을 제시한다. 크롤링 방식으로 수집된 SNS의 텍스트 데이터들에 대한 형태소 분석을 수행하여 단어 간 연관성을 파악한다. 또, 문장에서 추출된 형태소는 구축된 감성사전을 통해 통계적으로 분석하여 이를 시각화 하여 보여준다. 이때, 추출된 단어가 감성사전에 존재하지 않을 경우 이를 자동으로 추가하는 기법을 제안한다.
문서에서 저자의 의도와 주제, 그 안에 포함된 감성을 분석하는 것은 자연어 연구의 핵심적인 주제이다. 이와 유사하게 특정 글에 포함된 정치적 문화적 편향을 분석하는 것 역시 매우 의미 있는 연구주제이다. 우리는 최근 발생한 한 사건에 대하여 여러 신문사와 해당 신문사에서 생산한 기사를 중심으로 해당 글의 정치적 편향을 정량화 하는 방법을 제시한다. 그 방법은 선택된 주제어들의 문장 공간에서의 거리를 중심으로 그래프를 생성하고, 생성된 그래프의 기계학습을 통하여 편향과 특징을 분석하였다. 그리고 그 그래프들의 시간적 변화를 추적하여 특정 신문사에서 특정 사건에 대한 입장이 시간적으로 어떻게 변화하였는지를 동적으로 보여주는 그래프 애니메이션 시스템을 개발하였다. 실험을 위하여 최근 이슈에 대하여 12개의 신문사에서 약 2000여 개의 기사를 수집하였다. 그 결과, 약 82%의 정확도로 일반적으로 알려진 정치적 편향을 예측할 수 있었다. 또한, 학습 데이터에 쓰이지 않은 신문기사를 활용하여도 같은 정도의 정확도를 보임을 알 수 있었다. 우리는 이를 통하여 신문기사에서의 정치적 편향은 작성자나 신문사의 특성이 아니라 주제어들의 문장 공간에서의 거리 관계로 특성화할 수 있음을 보였다. 할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.