• 제목/요약/키워드: 감마 -마르코프 연쇄

검색결과 2건 처리시간 0.015초

그리드 단체 위의 디리슐레 분포에서 마르코프 연쇄 몬테 칼로 표집 (MCMC Algorithm for Dirichlet Distribution over Gridded Simplex)

  • 신봉기
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권1호
    • /
    • pp.94-99
    • /
    • 2015
  • 비모수 베이스 통계학, 확률적 표집에 기반한 추론 등이 기계학습의 주요 패러다임으로 등장하면서 디리슐레(Dirichlet) 분포는 최근 다양한 그래프 모형 곳곳에 등장하고 있다. 디리슐레 분포는 일변수 감마 분포를 벡터 분포로 확장한 형태의 하나이다. 본 논문에서는 감마 분포를 갖는 임의의 자연수 X를 K개의 자연수의 합으로 임의 분할 할 때 각 부분의 크기 비율을 디리슐레 분포에서 표집하는 방법을 제안한다. 일반적으로 디리슐레 분포는 연속적인 (K-1)-단체(simplex) 위에 정의 되지만 자연수로 분할하는 표본은 자연수라는 조건 때문에 단체 내부의 이산 그리드 점에만 정의된다. 본 논문에서는 단체 위의 그리드 상의 이웃 점들의 확률 분포로부터 마르코프연쇄 몬테 칼로(MCMC) 제안 분포를 정의하고 일련의 표본들의 마르코프 연쇄를 구현하는 알고리듬을 제안한다. 본 방법은 마르코프 모델, HMM 및 준-HMM 등에서 각 상태별 시간 지속 분포를 표현하는데 활용 가능하다. 나아가 최근 제안된 전역-지역(global-local) 상태지속 분포를 동시에 모형화하는 감마-디리슐레 HMM에도 응용가능하다.

시간 연속성을 갖는 비음수 행렬 분해를 이용한 음질 개선 (Speech Enhancement Using Nonnegative Matrix Factorization with Temporal Continuity)

  • 남승현
    • 한국음향학회지
    • /
    • 제34권3호
    • /
    • pp.240-246
    • /
    • 2015
  • 본 논문은 시간 연속성을 갖는 비음수 행렬 분해(Nonnegative Matrix Factorization, NMF)를 이용하여 잡음에 열화된 음성 신호의 음질을 개선하는 문제를 다룬다. 음성과 잡음 신호는 포아송 분포로 모델되며, NMF의 기본 벡터와 이득 벡터는 감마 분포로 모델된다. 이득 벡터의 시간 연속성은 음질 개선에 중요한 영향을 미치는 것으로 알려져 있다. 본 논문에서 시간의 연속성은 이득 벡터를 감마-마르코프 연쇄(Gamma-Markov chain, GMC) 사전 분포로 모델함으로써 이루어진다. 실험 결과는 제안된 알고리즘이 잡음 신호의 시간 연속성을 효과적으로 모델하는 것을 보여준다.