• Title/Summary/Keyword: 감마나이프 방사선수술

Search Result 41, Processing Time 0.031 seconds

Optimal Radiation Therapy Field for Malignant Astrocytoma and Glioblastoma Multiforme (악성 성상세포종 및 교모세포종의 적정 방사선 조사 영역에 대한 고찰)

  • Cho, Heung-Lae;Choi, Young-Min
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.199-205
    • /
    • 2002
  • Purpose : This study was peformed to determine the optimal radiation therapy field for the treatment of malignant astrocytoma and glioblastoma multiforme. Materials and Methods : From Jan. 1994 to Mar. 2000, 21 patients with malignant astrocytoma and glioblastoma multiforme, confirmed as recurrent by follow up MRI after surgery and radiation therapy, were analyzed. The distance from the margin of the primary lesion to the recurrent lesion was measured. The following factors were analyzed to Investigate the influence of these factors to recurrence pattern; tumor size, degree of edema, surgical extent, gamma knife radiosurgery and multiple lesions. Results : Among the 21 patients, 18 $(86\%)$ were recurred within 2 cm from the primary lesion site. 12 within 1 cm, 6 between 1 and 2 cm. The other 3 patients all with multiple lesions, were recurred at 3, 4, 5 cm, from the primary lesion site. The recurrence pattern was not influenced by the factors of tumor size, extent of edema, surgical extent, or gamma knife radiosurgery. However, patients with multiple lesions showed a tendency of recurrence at sites further from the primary lesion. Conclusions : Most $(86\%)$ of the recurrences of malignant astrocytoma and glioblastoma multiforme occurred within 2 cm from the primary lesion site. The width of treatment field does not need to be changed according to tumor size, degree of edema, surgical extent, or gamma knife radiosurgery. However, the treatment field for multiple lesions appears to be wider than that for a single lesion.

Clinical Analysis of Inverse Planning for Radiosurgery ; Gamma Knife Treatment Plan Study (방사선 수술 역방향 치료계획 유용성 평가)

  • Jin, Seong Jin;Je, Jae Yong;Park, Cheol Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.6
    • /
    • pp.343-348
    • /
    • 2015
  • The purpose of this study is a comparison of forward planning(FP) and inverse planning(IP) of a radiosurgery procedure. 10 patients of acoustic schwannoma MR image were used for treatment plan. FP-1,2 and IP were established under the same condition. FP and IP were compared by number of shot, conformity index(CI), paddic conformity index(PCI), gradiant index(GI) and treatment time. On average the treatment plan produced by IP tool provided an improved or similar CI, PCI, GI and reduced treatment time as compared to the FP (CI;FP-1:0.85, FP-2:0.86, IP:0.94, PCI;FP-1:0.79, FP-2:0.81, IP:0.78, GI;FP-1:2.94, FP-2:2.94, IP:3.01). The inverse planning system provides a clinically useful plan while reducing the planning time and treatment time.

A Study on Dose Distribution Programs in Gamma Knife Stereotactic Radiosurgery (감마나이프 방사선 수술 치료계획에서 선량분포 계산 프로그램에 관한 연구)

  • 고영은;이동준;권수일
    • Progress in Medical Physics
    • /
    • v.9 no.3
    • /
    • pp.175-184
    • /
    • 1998
  • The dose distribution evaluation program for the stereotactic radiosurgery treatment planning system using a gamma knife has been built in order to work on PC. And this custom-made dose distribution is compared with that of commercial treatment planning program. 201 source position of a radiation unit were determined manually using a gamma knife collimator draft and geometrical coordinates. Dose evaluation algorithm was modified for our purpose from the original KULA, a commercial treatment planning program. With the composed program, dose distribution at the center of a spherical phantom, 80 mm in diameter, was evaluated into axial, coronal and sagittal image per each collimator. Along with this evaluated data, the dose distribution at a arbitrary point of inside the phantom was compared with those from KULA. Radiochromic film was set up at the center of the phantom and was irradiated by gamma knife, for the verification of dose distribution. In result, the deviation of the dose distribution from that of KULA is less than ${\pm}$3%, which is equivalent to ${\pm}$0.3 mm in 50% isodose distribution for all examined coordinates and film verification. The custom-made program, GPl is proven to be a good tool for the stereotactic radiosurgery treatment planning program.

  • PDF

Methodologic Aspect of LINAC-based Stereotactic Radiosurgery (선형가속기 기반 뇌정위 방사선 수술기법)

  • Choi, Tae Jin
    • Progress in Medical Physics
    • /
    • v.23 no.3
    • /
    • pp.127-137
    • /
    • 2012
  • A conversing beam is firstly designed for radiosurgery by a neurosugern Lars Leksell in 1949 with orthogonal x-rays tube moving through horizontal moving arc to focusing the beam at target center. After 2 decades he composits 201 source of the Co-60 for gamma knife which beams focused at locus. Sveral linac-based stereotactic radiosurgery using the circular collimated beam which size range for 0.4~4.0 cm in a diameter by non-coplanar multiarc have been developed over the decades. The irregular lesions can be treated by superimposing with several spherical shots of radiation over the tumour volume. Linac based techniques include the use of between 4 and 11 non-co-planar arcs and a dynamic rotation technique and use photon beam energies in the range of 6~10 MV. Reviews of the characteristics of several treatment techniques can be found in the literature (Podgorsak 1989, Schell 1991). More in recent, static conformal beams defined by custom shaped collimators or a mini- or micro-multileaf collimator (mMLC) have been used in SRS. Finally, in the last few years, intensity-modulated mMLC SRS has also been introduced. Today, many commercial and in-house SRS programs have also introduced non-invasive immobilization systems include the cyberknife and tomotherapy and proton beam. This document will be compared the characteristics of dose distribution of radiosurgery as introduced gamma knife, BrainLab include photon knife in-house SRS program and cyberknife in currently wide used for a cranial SRS.

Comparative Analysis of Treatment Planning System and Dose Distribution of Gamma knife PerfexionTM using EBT-3 Film (EBT-3 필름을 사용한 감마나이프 퍼펙션TM의 치료 계획 시스템 및 선량 분포 비교 분석)

  • Jin, Seongjin;Kim, eongjin;Seo, Weonseop;Hur, Beongik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.6
    • /
    • pp.509-515
    • /
    • 2017
  • The purpose of this study is to measure the 3 dimensional dose distribution of Gamma knife $Perfection^{TM}$, make a comparative analysis of the result and establish the measurement method for the procedures using EBT3 film. The dose distributions of the Gamma knife $Perfection^{TM}$ installed in two hospitals were evaluated in accuracy and precision. For accuracy, the difference between the mechanical center axis and the dose center axis was assessed on a 4 mm collimator. The allowed difference in accuracy is within 0.3 mm and it was measured as 0.098 mm, 0.195 mm for A hospital and 0.229 mm, and 0.223 mm for B hospital. For precision the difference between the FWHM(Full Width at Half Maximum) of Gamma Plan and measurement in the 4, 8, and 16 mm collimators was calculated. The allowed difference in precision is less than ${\pm}1mm$. The value of the hospital A was -0.283 ~ 0.583 mm, and the hospital B was -0.857 ~ 0.810 mm. When analyzing the dose distributions using the image-j program, it is necessary to establish a clearer reference point of the measurement point, and it is considered that the comparison of the dose distribution should be performed in actual treatment irradiation dose with a high dose usable film.

Physical Aspect of The Gamma Knife and Its Clinical Application (감마나이프의 물리적 특성 및 그의 임상적 적용)

  • Yi Byong Yong;Chang Hyesook;Choi Eunkyung;Whang C. Jin;Kwon Y.
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.153-158
    • /
    • 1991
  • The first Leksell Gamma Knife unit (LGU-type B) for radiosurgery in Asia was installed in Asan Medical Center. Mechanical accuracy, output, dose profiles for each collimators were measure during acceptance test. Sixty eight patients (sixty nine cases) had undergone radiosugery from May 1990 to September 1990. AVM cases were 24 cases $(35\%)$, acoustic tumor 10 $(14\%)$, pituitary adenoma 4 $(6\%)$, metastatic tumor 18 $(26\%)$, meningioma 6$(9\%)$ and others 18 $(25\%)$. Dose of $25\;Gy\sim100\;Gy$ was delivered at one time according to disease, location and sizes.

  • PDF

A Case of Rapid Cycling Secondary Mania after Gamma-knife Radiosurgery (감마나이프 방사선수술 후 발생한 급속 순환성 이차성 조증 1예)

  • Chung, Chan-Ho;Chae, Jeong-Ho;Kim, Im-Ryol;Lee, Chung-Kyoon;Lee, Kyu-Hang
    • Korean Journal of Biological Psychiatry
    • /
    • v.3 no.2
    • /
    • pp.302-308
    • /
    • 1996
  • A case of rapid cycling mania secondary to gamma-knife radiosurgery for the treatment of refractory epilepsy was reported. A 21-year old woman who had a gamma-knife radiosurgical operation for the treatment of refractory seizure two years ago was admitted because of manic episodes. Although seizure was relieved, manic symptoms like decreased need for sleep, elated mood, unprovoked laughing, grandiose delusion and bizarre behaviors were developed 11 months after the operation. These symptoms recurred lour rimes for eight months. There were no past personal and family history of mood disorders. Laboratory examinations including electroencephalogram ana endocrinological study did not show any abnormal findings. The rapid cycling secondary manic was relieved by lithium. She was then discharged after 5 months. Mood change was not significant during follow-up while hypomania emerged by dose reduction. The secondary mania seemed to be caused or triggered by the right temporal lobe damage induced by gamma-knife radiosurgery.

  • PDF

Linear Accelerator Radiosurgery for Trigeminal Neuralgia: Case Report (선형가속기를 이용한 삼차신경통의 정위적 방사선수술: 증례보고)

  • Yun Hyong-Geun
    • Radiation Oncology Journal
    • /
    • v.24 no.2
    • /
    • pp.144-148
    • /
    • 2006
  • Trigeminal neuralgia is defined as an episodic electrical shock-like sensation in a dermatomal distribution of the trigeminal nerve. When medications fail to control pain, various procedures are used to attempt to control refractory pain. Of available procedures, stereotactic radiosurgery is the least invasive procedure and has been demonstrated to produce significant pain relief with minimal side effects. Recently, linear accelerators were introduced as a tool for radiosurgery of trigeminal neuralgia beneath the already accepted gamma unit. Author have experienced one case with trigeminal neuralgia treated with linear accelerator. The patient was treated with 85 Gy by means of 5 mm collimator directed to trigeminal nerve root entry zone. The patient obtained pain free without medication at 20 days after the procedure and remain pain free at 6 months after the procedure. He didn't experience facial numbness or other side effects.

Development of Independent Target Approximation by Auto-computation of 3-D Distribution Units for Stereotactic Radiosurgery (정위적 방사선 수술시 3차원적 공간상 단위분포들의 자동계산법에 의한 간접적 병소 근사화 방법의 개발)

  • Choi Kyoung Sik;Oh Seung Jong;Lee Jeong Woo;Kim Jeung Kee;Suh Tae Suk;Choe Bo Young;Kim Moon Chan;Chung Hyun-Tai
    • Progress in Medical Physics
    • /
    • v.16 no.1
    • /
    • pp.24-31
    • /
    • 2005
  • The stereotactic radiosurgery (SRS) describes a method of delivering a high dose of radiation to a small tar-get volume in the brain, generally in a single fraction, while the dose delivered to the surrounding normal tissue should be minimized. To perform automatic plan of the SRS, a new method of multi-isocenter/shot linear accelerator (linac) and gamma knife (GK) radiosurgery treatment plan was developed, based on a physical lattice structure in target. The optimal radiosurgical plan had been constructed by many beam parameters in a linear accelerator or gamma knife-based radiation therapy. In this work, an isocenter/shot was modeled as a sphere, which is equal to the circular collimator/helmet hole size because the dimension of the 50% isodose level in the dose profile is similar to its size. In a computer-aided system, it accomplished first an automatic arrangement of multi-isocenter/shot considering two parameters such as positions and collimator/helmet sizes for each isocenter/shot. Simultaneously, an irregularly shaped target was approximated by cubic structures through computation of voxel units. The treatment planning method by the technique was evaluated as a dose distribution by dose volume histograms, dose conformity, and dose homogeneity to targets. For irregularly shaped targets, the new method performed optimal multi-isocenter packing, and it only took a few seconds in a computer-aided system. The targets were included in a more than 50% isodose curve. The dose conformity was ordinarily acceptable levels and the dose homogeneity was always less than 2.0, satisfying for various targets referred to Radiation Therapy Oncology Group (RTOG) SRS criteria. In conclusion, this approach by physical lattice structure could be a useful radiosurgical plan without restrictions in the various tumor shapes and the different modality techniques such as linac and GK for SRS.

  • PDF

Analyses of the indispensible Indices in Evaluating Gamma Knife Radiosurgery Treatment Plans (감마나이프 방사선수술 치료계획의 평가에 필수불가결한 지표들의 분석)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.303-312
    • /
    • 2017
  • The central goal of Gamma Knife radiosurgery(GKRS) is to maximize the conformity of the prescription isodose surface, and to minimize the radiation effect of the normal tissue surrounding the target volume. There are the various kinds of indices related with the quality of treatment plans such as conformity index, coverage, selectivity, beam-on time, gradient index(GI), and conformity/gradient index(CGI). As the best treatment plan evaluation tool, we must check by all means conformity index, GI, and CGI among them. Specially, GI and CGI related with complication of healthy normal tissue is more indispensible than conformity index. Then author calculated and statistically analysed CGI, the newly defined conformity/gradient index as well as GI being applied widely using the treatment planning system Leksell GammaPlan(LGP) and the verification method Variable Ellipsoid Modeling Technique(VEMT). In the study 10 patients with intracranial lesion treated by GKRS were included. Author computed the indices from LGP and VEMT requiring only four parameters: the prescribed isodose volume, the volume with dose > 30%, the target volume, and the volume of half the prescription isodose. All data were analyzed by paired t-test, which is statistical method used to compare two different measurement techniques. No statistical significance in GI at 10 cases was observed between LGP and VEMT. Differences in GI ranged from -0.14 to 0.01. The newly defined gradient index calculated by two methods LGP and VEMT was not statistically significant either. Author did not find out the statistical difference for the prescribed isodose volume between LGP and VEMT. CGI as the evaluation index for determining the best treatment plan is not significant statistically also. Differences in CGI ranged from -4 to 3. Similarly newly defined Conformity/Gradient index for GKRS was also estimated as the metric for the evaluation of the treatment plans through statistical analysis. Statistical analyses demonstrated that VEMT was in excellent agreement with LGP when considering GI, new gradient index, CGI, and new CGI for evaluating the best plans of GKRS. Due to the application of the fast and easy evaluation tool through LGP and VEMT author hopes CGI and newly defined CGI as well as gradient indices will be widely used.