기계학습의 군집화(clustering) 기법은 예제들 간의 유사성에 근거하여 주어진 예제들을 무리 짓는 방법이다. 준감독(semi-supervised) 군집화는 카테고리가 부여된(labeled) 소수의 예제들을 적극적으로 활용하여 군집형태가 보다 자연스럽게 형성되도록 유도하는 군집화 방법이다. 준감독 군집화 문제에서 예제에 카테고리를 부여하는 작업은 현실적으로 극히 제한적이거나 카테고리를 부여하는데 소요되는 비용이 상당하므로, 제한된 자원 내에서 군집화에 효용성이 높을 예제들을 선정하여 카테고리를 부여하는 것이 필요하다. 본 논문에서는 기존 연구에서 능동적 학습의 초기 훈련예제 선정을 위해 제안된 군집기반 훈련예제 선정 방법을 준감독 군집화에 적용하여 군집 결과의 질을 향상시키고자 한다. 군집화를 이용한 예제 선정 방법은 유사한 예제들은 동일한 카테고리에 속할 가능성이 높다는 가정하에 전체 예제를 활용하여 선정하고자 하는 예제 수만큼 군집을 생성 한 후. 각 군집의 중심점에 가장 가까운 예제들을 대표 예제로 선정하여 훈련 집합을 구성하는 방법이다 본 논문에서는 문서를 대상으로 하는 준감독 군집화 실험을 통해, 카테고리를 부여할 예제를 임의로 선정한 경우에 비해 군집화를 이용한 훈련 예제들로 준감독 군집화를 수행한 경우가 보다 좋은 군집을 형성함을 확인하였다.
사용자의 감정을 자동으로 인식하는 연구는 사용자 중심의 서비스를 제공할 때 중요한 요소이다. 인간은 하나의 감정을 다양하게 분류하여 인식한다. 그러나 기계학습을 통해 감정을 인식하려고 할 때 감정을 단일값으로 취급하는 방법만으로는 좋은 성능을 기대하기 어렵다. 따라서 본 논문에서는 비감독 학습과 감독학습을 결합한 감정인식 모델을 제시하였다. 제안된 모델의 핵심은 비감독 학습을 이용하여 인간처럼 한 개의 감정을 다양한 하부 감정으로 분류하고, 이렇게 분류된 감정을 감독학습을 통해 성능을 향상 시키는 것이다.
영상 데이터와 같은 대용량의 데이터를 분류하고자 할 경우, 입력 데이터의 차원을 줄여서 특징 벡터를 뽑아내는 전처리 과정은 필수적이다. 이 경우 특징 벡터가 입력 데이터의 정보를 최대한 포함하도록 하는 것이 중요하다. 특징 벡터를 뽑는 대표적인 방법으로는 PCA, ICA, LDA, MLP와 같은 특징 추출(feature extraction) 방법을 들 수 있다. PCA와 LDA는 무감독 학습 방식이고, LDA, MLP는 감독 학습 방식에 해당한다. 감독학습 방식의 경우 입력 정보와 함께 클래스 정보를 사용하기 때문에 데이터를 분류하기에 더 좋은 특징들을 뽑아낼 수 있는 장점이 있다. 본 논문에서는 무감독 학습 방식인 PCA에 클래스에 대한 정보를 함께 사용하여 특징을 추출함으로써 데이터 분류에 더욱 적합한 특징들을 뽑는 방법을 제안하였다. 그리고, Yale face database를 사용하여 제안한 알고리즘의 성능을 기존의 알고리즘과 비교, 테스트하였다.
음성을 통한 자동화된 감정 인식은 편리하고 다양한 서비스를 제공할 수 있어 중요한 연구분야라고 할 수 있다. 기계학습의 다양한 알고리즘을 사용하여 감정을 인식하는 연구가 진행되어 왔지만 그 성능은 아직 초보적 단계를 벋어나지 못하고 있는 실정이다. 앞선 연구에서 우리는 비감독 학습 방법으로 감성을 그룹화 하고 이것을 이용하여 다시 감독 학습을 하는 시스템을 소개 하였다. 본 연구에서 우리는 감독 학습 방법에서 사용했던 오류 역전파 알고리즘을 support vector machine(SVM) 으로 변경하고 몇 가지 구조를 변경하여 기능을 개선하였다. 실험을 통하여 성능을 측정하였으며 어느 정도 개선된 결과를 얻을 수 있었다.
본 논문에서는 준감독 학습 알고리즘(Semi-Supervised Learning Algorithm)의 학습데이터에 필요한 소수의 레이블 데이터를 능동적으로 선택하기 위한 무감독경쟁학습 알고리즘인 VCNN(Vector Centroid Neural Network)을 제안한다. 준감독 학습 알고리즘에서 레이블 데이터의 선택은 학습 결과 큰 영향을 미치고, 레이블 데이터를 선택하는데 있어 많은 비용과 전문적인 지식이 필요하다. 본 논문에서 능동적이고 효율적인 레이블 데이터 선택을 검증하기 위하여 UCI database 와 caltech dataset 을 이용하여 실험한 결과, 기존의 레이블 데이터 선택 방법과 비교하여 안정된 분류 결과와 최소의 오차율을 나타냈다.
개체명 인식은 문장에서 개체명을 추출하고 추출된 개체명의 범주를 결정하는 작업이다. 기존의 개체명 인식 연구는 주로 지도 학습 기법이 사용되어 왔다. 지도 학습을 위해서는 개체명 범주가 수동으로 부착된 대용량의 학습 말뭉치가 필요하며, 대용량의 학습 말뭉치를 수동으로 구축하는 것은 시간과 인력이 많이 들어가는 일이다. 본 논문에서는 학습 말뭉치 구축비용을 최소화하면서 개체명 인식 성능을 빠르게 향상시키기 위한 준지도 학습 방법을 제안한다. 제안 방법은 초기 학습 말뭉치를 구축하기 위해 원거리 감독법을 사용한다. 그리고 배깅과 능동 학습을 결합한 앙상블 기법의 하나인 능동 배깅을 사용하여 초기 학습 말뭉치에 포함된 노이즈 문장을 효과적으로 제거한다. 실험 결과, 15회의 능동 배깅을 통해 개체명 인식 F1-점수를 67.36%에서 76.42%로 향상시켰다.
개체명 인식은 문서에서 개체명을 추출하고 추출된 개체명의 범주를 결정하는 작업이다. 기존의 지도 학습 기법을 이용한 개체명 인식을 위해서는 개체명 범주가 수동으로 부착된 대용량의 학습 말뭉치가 필요하며, 대용량의 말뭉치 구축은 인력과 시간이 많이 들어가는 일이다. 본 논문에서는 학습 말뭉치 구축비용을 최소화하고 초기 학습 말뭉치의 노이즈를 제거하여 말뭉치의 품질을 향상시키는 방법을 제안한다. 제안 방법은 반자동 개체명 사전 구축 방법으로 구축한 개체명 사전과 원거리 감독법을 사용하여 초기 개체명 범주 부착 말뭉치를 구축한다. 그리고 휴리스틱을 이용하여 초기 말뭉치의 노이즈를 제거하여 학습 말뭉치의 품질을 향상시키고 개체명 인식의 성능을 향상시킨다. 실험 결과 휴리스틱 적용을 통해 개체명 인식의 F1-점수를 67.36%에서 73.17%로 향상시켰다.
야구 경기에서는 한 경기에 여러 투수가 등판하게 되는데, 상황에 따라 성격이 다른 투수가 공을 던지게 된다. 이러한 등판 투수의 선정은 감독 고유의 권한이며 감독이 오랜 경험을 통해 승리하기 위해 최적의 투수를 선정하게 된다. 본 논문은 그러한 감독의 경험을 학습하기 위하여 프로야구 경기에서 발생하는 기록 데이터를 데이터마이닝을 이용하여 분석한 후, 앞으로 열릴 경기에 등판할 투수를 미리 예측할 수 있는 방안에 대하여 연구하였다.
언어에서 명사 및 키워드 추출은 정보처리에서 매우 필수적인 요소이다. 하지만, 한국어 정보처리에서 명사 추출과 키워드 추출은 아직도 많은 문제점을 안고 있다. 본 논문에서는 명사의 등장 특성을 고려한 효율적인 명사 추출 방법에 대해서 제시하였다. 제시한 방법은 대량의 문서를 빠르게 처리해야 하는 정보 검색과 같은 분야에서 유용하게 쓰일 수 있다. 또한 대량의 문제를 자동으로 분류하기 위하여 비감독 학습 기법에 의해 카테고리별 키워드를 구성하기 위한 방법을 제안하였다. 제안된 방법은 감독 학습 기법의 키워드 추출기법 중에서 우수하다고 알려진 X2기법과 DF 기법보다 우수한 분류 성능을 보였다.
근래에 들어서 인터넷의 발전에 따라 사용자의 정보 검색 및 정보 서비스 이용에 대한 수요량이 많아지고 있으며, 이와 동시에 사용자 개인마다 적합하지 않은 정보에 대한 검색 시간과 서비스 이용에 대한 비용이 늘어나고 있다. 이에 따라서 사용자가 인터넷을 이용하면서 일어나는 행위들에 대한 정보를 수집하고, 이를 학습하여 생성한 사용자 프로파일을 기반으로 사용자 개인마다 맞추어진 적합한 정보를 제공하는 개인화 서비스가 늘어나고 있다. 본 논문에서는 사용자의 여러 행위에 대해 비 감독 학습 방법인 클러스터링을 이용하여 사용자 관심 클러스터를 생성, 사용하여 기존의 사용자 프로파일 학습에서 간과하고 있는 시간에 따라 변화하는 사용자의 관심에 대한 변화를 탐지하고, 변화하는 사용자의 관심 이동 형태에 따라 이를 사용자 프로파일을 생성하는 학습에 적용할 수 있도록 하는 방법을 제시하므로 해서 기존의 개인화를 위한 사용자 프로파일 학습 방법보다 진보한 학습 방법을 지닌 시스템 모델을 제시하려 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.