• Title/Summary/Keyword: 갈색퍼짐병

Search Result 13, Processing Time 0.02 seconds

Antagonistic Mechanisms and Culture Conditions of Isolated Microbes Applied for Controlling Large Patch Disease in Zoysiagrass (한국잔디 갈색퍼짐병 방제를 위한 선발 미생물의 길항기작 및 배양조건)

  • Kim, Young-Sun;Ma, Ki-Yoon;Lee, Geung-Joo
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.492-500
    • /
    • 2015
  • Our previous report demonstrated successful isolation of soil-borne bacteria that suppressed the potential of Rhizoctonia solani AG2-2 (IV) causing turfgrass large patch disease when applied to Korean lawngrass (Zoysia japonica). The current study aimed to uncover the mechanisms of this antagonism of Rhizoctonia solani and to define culture conditions for the isolated microbes. We found that two Bacillus isolates, I-009 and FRIN-001-1 strains, produced cellulase and siderophore, but not chitinase, while the Pseudomonas YPIN-022 strain was found to release only siderophore, implying that three antagonistic bacteria commonly interrupt Fe uptake by the large patch pathogen. The I-009 and FRIN-001-1 isolates grew best at 35 and $30^{\circ}C$ in growth medium of pH 5 to 8 for 32 and 28 h, respectively, while optimum growth for the YPIN-022 strain was found at $35^{\circ}C$ at pH 5 to 9 for 24 h. Good growth of I-009 and YPIN-022 over 24 h was obtained in M9 minimal medium supplemented with 1% sucrose, 0.5% yeast extract and 0.1% potassium chloride. FRIN-001-1 grew well in M9 medium with 1% mannitol, 0.5% yeast extract and 0.1% potassium phosphate dibasic.

Isolation and Selection of Functional Microbes for Eco-friendly Turfgrass Management in Golf Course from Livestock Manure Compost (친환경 잔디관리를 위한 가축분퇴비 중 기능성미생물의 분리 및 선발)

  • Jeong, Je-Yong;Kim, Young-Sun;Cho, Sung-Hyun;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.6 no.2
    • /
    • pp.157-164
    • /
    • 2017
  • Functional microorganisms decompose various organic matter by enzyme activity and suppress plant disease caused by pathogen. This study was conducted to isolate and select functional microorganisms with protein or carbohydrate degradation activities and antagonistic activity against turfgrass fungal pathogens for eco-friendly turfgrass management in golf course from compost containing livestock manure of poultry or swine. Totally 68 isolates collected from livestock manure compost strains were isolated and tested for their activities of amylase, protease and lipase and antagonistic activities against Rhizoctonia solani AG2-2, R. solani AG1-1, and Sclerotinia homoeocarpa. Among the isolates, 34 strains were selected as functional microbes showing higher activities of amylase and protease. Three isolates of ASC-14, ASC-18, and ASC-35 among the 34 strains were selected as antifungal bacterial strains repressing the above 3 turfgrass fungal pathogens. Analysis results of 16s rRNA gene sequence and phylogenic cluster indicated that ASC-14 and ASC-18 belonged to Bacillus amyloliquefaciens, while ASC-35 was B. subtilis, respectively.

Analysis of ZjWRKY3, ZjWRKY7 induced by multiple stress in Zoysia japonica (다양한 스트레스에 유도되는 들잔디 ZjWRKY3, ZjWRKY7의 분석)

  • Kim, Woo-Nam;Song, In-Ja;Kang, Hong-Gyu;Sun, Hyeon-Jin;Yang, Dae-Hwa;Lee, Yong-Eok;Kwon, Yong-Ik;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.220-228
    • /
    • 2017
  • Many crops including cereals, tuber crops, feeds, and turf grasses are often damaged by various environmental stresses such as drought, salt, cold, and high temperature, causing the reduction of their productivity. Plants are sessile and cannot escape from environmental stresses. Thus, plants evolve in the direction of overcoming the environmental stresses. Some plant genes such as ARF, ABI3, NAC, HSF, and WRKY are known to respond to environmental stresses as they transcriptionally regulate the stress response pathways. For example, the OsWRKY76 gene contributes to the enhanced resistance to low temperatures and pathogenic infections. The AtWRKY28 also plays a role in environmental stresses. Zoysiagrass (Zoysia japonica Steud.) is popularly grown for gardens and golf courses. However, the function of the WRKY gene, another environmental stress-related gene, is not known in zoysiagrass. In this study, the ZjWRKY3 and ZjWRKY7 genes with one shared WRKY domain have been isolated in zoysiagrass. The expression of these genes increased in response to low temperature, drought, and salt stresses. Furthermore, the infection of the brown patch-causing Rhozoctonia solani induced the expression of ZjWRKY3 and ZjWRKY7. The corresponding proteins bind to the W-box of the Zjchi promoter, possibly regulating their transcriptions. The researchers suggest that the ZjWRKY3 and ZjWRKY7 genes transcriptionally regulate abiotic and biotic stress related downstream genes.