• Title/Summary/Keyword: 간헐 제트

Search Result 7, Processing Time 0.02 seconds

Effects of Pulsating Jet Blowing on Stall Control of Two Dimensional Elliptic Airfoil (이차원 타원형 날개꼴의 실속제어에서 간헐제트 브로잉의 효과)

  • Lee, Ki-Young;Sohn, Myong-Hwan;Jeong, Hung-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.1-8
    • /
    • 2005
  • This paper explored the effects of separation control through the use of pulsating jet blowing on a two dimensional elliptical airfoil. To develop an active control technique of flow separation, a flow control actuator utilizing continuous/pulsed jet of pressurized air was designed and installed in a wind tunnel testing model of elliptic wing. PIV measurement and flow visualization of the wing near field were conducted to access the feasibility and effectiveness of the pulsed jet blowing on controlling the stall of the elliptical wing in subsonic flow. PIV experimental results show that separation control can provide significant reduction in turbulent flow wake and separation bubbles by jet blowing. The pulsating jet blowing is more effective on the separation control than continuous one. Increased jet frequency suppressed the turbulent separated flow wake effectively at even higher AOAs.

Flow Separation Control Effects of Blowing Jet on an Airfoil (블로잉 제트에 의한 에어포일에서의 유동박리 제어효과)

  • Lee, Ki-Young;Chung, Heong-Seok;Cho, Dong-Hyun;Sohn, Myong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1059-1066
    • /
    • 2007
  • An experimental study has been conducted to investigate the flow separation control effects of a blowing jet on an elliptic airfoil at a Reynolds number of 7.84×105 based on the chord length. A blowing jet was obtained by pressing a plenum inside the airfoil and ejecting flow out of a thin jet slot that located in leading edge or trailing edge. The experimental results have shown that the blowing jet had an effect of suppressing the flow separation, resulting in the higher suction pressure distribution and higher normal force. The increase in Cn was more pronounced at higher incidence, whereas the effectiveness of the blowing jet reduced at lower incidences. The leading edge pulsating blowing with 90° was the most effective in controlling the flow separation than other types of blowing jet configuration tested in this research. Moreover, when the pulsating blowing was applied, the stall angle was postponed about 2°-3°. The continuous and pulsating blowing jet is a direct and effective flow separation control for improving the aerodynamic characteristics and performances of airfoil.

An Experimental Study About The Intermittent Flow Field in The Transition Region of a Turbulent Round Jet (발달하는 원형제트의 간헐적 유동에 관한 실험적 연구)

  • 김숭기;조지룡;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.230-240
    • /
    • 1990
  • An exprimental research has been carried out to find the intermittent flow pattern in the transition region of a turbulent round jet in order to elucidate detailed turbulence structure and to accumulate basic data necessary for computational turbulence modelling. Turbulent signals were processed digitally to obtain conventional or conditional velocity components. The high-order conditional correlations obtained in this study showed similar trends as those of other free shear flows. It was found that the non-turbulent fluid contributes negligibly to the turbulent kinetic energy production and its diffusive transport and that the diffusion by bulk convection has the same order of magnitude as the gradient diffusion in the free boundary region. The statistical analyses such as flatness factor, skewness factor and probability density functions of turbulent and non-turbulent zone durations have also been performed.

Development of the intermittency turbulence model for a plane jet flow (자유 평면 제트유동 해석을 위한 간혈도 난류모델의 개발)

  • 조지룡;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.528-536
    • /
    • 1987
  • In a turbulent free shear flow, the large scale motion is characterized by the intermittent flow which arises from the interaction between the turbulent fluid and the irrotational fluid of the environment through the mean velocity gradient. This large scale motion causes a bulk convection whose effect is similar to the spatial diffusion process. In this paper, the total diffusion process is proposed to be approximated by weighted sum of the bulk convection due to the large scale motion and the usual gradient diffusion due to small scale motion. The diffusion term in conventional .kappa.-.epsilon. model requires on more equation of the intermittency transport equation. A production term of this equation means mass entrainment from the irrotational fluid to the turbulent one. In order to test the validity of the proposed model, a plane jet is predicted by this method. Numerical results of this model is found to yield better agreement with experiment than the standard .kappa.-.epsilon. model and Byggstoyl & Kollmann's model(1986). Present hybrid diffusion model requires further tests for the check of universality of model and for the model constant fix.

Experimental Study on Characteristics of Steam Condensation in a Sub-cooled Water Pool (과냉각수조에서 증기응축 특성에 관한 실험적 연구)

  • Kim, Hwan-Yeol;Cho, Seok;Song, Chul-Hwa;Chung, Moon-Ki;Choi, Sang-Min
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.298-308
    • /
    • 1999
  • Experimental study on characteristics of direct contact condensation of steam discharged into a sub-cooled water pool has been performed using five different sizes of horizontal nozzle over a wide range of steam mass fluxes and pool temperatures. Steam condensation phenomena have been observed visually and by taking pictures of steam jets using a high speed video camera. Two different steam jet shapes such as ellipsoidal shape and conical shape were typically observed for a stable steam jet, depending on the steam mass flux and pool temperature. The steam jet expansion ratio and the steam jet length as well as the condensation heat transfer coefficients were determined. The effect of steam mass flux, pool temperature, and nozzle diameter on these parameters were also discussed. Empirical correlations for the steam jet lengths and the condensation heat transfer coefficients as a function of steam mass flux and condensation driving potential were established. The axial and radial temperature distributions in steam jet and in surrounding water were measured. The effect of steam mass flux, pool temperature, and nozzle diameter were also discussed. The condensation regime map, which consists of six regimes such as chugging, transient chugging, condensation oscillation, stable condensation, bubble condensation oscillation, and intermittent oscillation condensation, were established. In addition, the dynamic pressures at the pool wall were measured. The close relation of dynamic pressure and steam condensation mode, which is also dependent on steam mass flux and pool temperature, was found.

  • PDF

Prediction of Isothermal and Reacting Flows in Widely-Spaced Coaxial Jet, Diffusion-Flame Combustor (큰 지름비를 가지는 동축제트 확산화염 연소기내의 등온 및 연소 유동장의 예측)

  • O, Gun-Seop;An, Guk-Yeong;Kim, Yong-Mo;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2386-2396
    • /
    • 1996
  • A numerical simulation has been performed for isothermal and reacting flows in an exisymmetric, bluff-body research combustor. The present formulation is based on the density-weighted averaged Navier-Stokes equations together with a k-epsilon. turbulence model and a modified eddy-breakup combustion model. The PISO algorithm is employed for solution of thel Navier-Stokes system. Comparison between measurements and predictions are made for a centerline axial velocities, location of stagnation points, strength of recirculation zone, and temperature profile. Even though the numerical simulation gives acceptable agreement with experimental data in many respects, the present model is defictient in predicting the recoveryt rate of a central near-wake region, the non-isotropic turbulence effects, and variation of turbulent Schmidt number. Several possible explanations for these discrepancies have been discussed.

Scientific Objectives and Mission Design of Ionospheric Anomaly Monitoring by Magnetometer And Plasma-Probe (IAMMAP) for a Sounding Rocket in Low-Altitude Ionosphere (저고도 전리권 관측을 위한 사운딩 로켓 실험용 IAMMAP(Ionospheric Anomaly Monitoring by Magnetometer And Plasma-Probe)의 과학적 목표와 임무 설계)

  • Jimin Hong;Yoon Shin;Sebum Chun;Sangwoo Youk;Jinkyu Kim;Wonho Cha;Seongog Park;Seunguk Lee;Suhwan Park;Jeong-Heon Kim;Kwangsun Ryu
    • Journal of Space Technology and Applications
    • /
    • v.4 no.2
    • /
    • pp.153-168
    • /
    • 2024
  • Sounding rockets are cost-effective and rapidly deployable tools for directly exploring the ionosphere and microgravity environments. These rockets achieve their target altitudes quickly and are equipped with various scientific instruments to collect real-time data. Perigee Aerospace plans its inaugural test launch in the first half of 2024, followed by a second performance test launch in January 2025. The second launch, scheduled off the coast of Jeju Island, aims to reach an altitude of approximately 150 km with a payload of 30 kg, conducting various experiments in the suborbital region. Particularly in mid-latitude regions, the ionosphere sporadically exhibits increased electron densities in the sporadic E layers and magnetic fluctuations caused by the equatorial electrojet. To measure these phenomena, the sounding rocket version of ionospheric anomaly monitoring by magnetometer and plasma-probe (IAMMAP), currently under development at the KAIST Satellite Research Center, will be onboard. This study focuses on enhancing our understanding of the mid-latitude ionosphere and designing observable missions for the forthcoming performance tests.