• Title/Summary/Keyword: 간지

Search Result 204, Processing Time 0.025 seconds

Taxonomical Classification and Genesis of Jeju Series in Jeju Island (제주도 토양인 제주통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Moon, Kyung-Hwan;Jeon, Seung-Jong;Lim, Han-Cheol;Lee, Shin-Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.230-236
    • /
    • 2010
  • Jeju Island is a volanic island which is located about 96 km south of Korean Peninsula. Volcanic ejecta, and volcaniclastic materials are widespread as soil parent materials throughout the island. Soils on the island have the characteristics of typical volcanic ash soils. This study was conducted to reclassify Jeju series based on the second edition of Soil Taxonomy and to discuss the formation of Jeju series in Jeju Island. Morphological properties of typifying pedon of Jeju series were investigated, and physico-chemical properties were analyzed according to Soil survey laboratory methods manual. The typifying pedon has dark brown (10YR 3/3) silt clay loam A horizon (0~22 cm), strong brown (7.5YR 4/6) silty clay BAt horizon (22~43 cm), brown (7.5YR 4/4) silty clay Bt1 horizon (43~80 cm), brown (7.5YR 4/6) silty clay loamBt2 horizon (80~105 cm), and brown (10YR 5/4) silty clay loam Bt3 horizon (105~150 cm). It is developed in elevated lava plain, and are derived from basalt, and pyroclastic materials. The typifying pedon contains 1.3~2.1% oxalate extractable (Al + 1/2 Fe), less than 85%phosphate retention, and higher bulk density than 0.90 Mg $m^{-3}$. That can not be classified as Andisol. But it has an argillic horizon from a depth of 22 to 150 cm, and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. That can be classified as Ultisol, not as Andisol. Its has 0.9% or more organic carbon in the upper 15 cm of the argillic horizon, and can be classified as Humult. It dose not have fragipan, kandic horizon, sombric horizon, plinthite, etc. in the given depths, and key out as Haplohumult. A hoizon (0~22 cm) has a fine-earth fraction with both a bulk density of 1.0 Mg $cm^{-3}$ or less, and Al plus 1/2 Fe percentages (by ammonium oxalate) totaling more than 1.0. Thus, it keys out as Andic Haplohumult. It has 35% or more clay at the particle-size control section, and has thermic soil temperature regime. Jeju series can be classified as fine, mixed, themic family of Andic Haplohumults, not as ashy, thermic family of Typic Hapludands. In the western, and northern coastal areas which have a relatively dry climate in Jeju Island, non Andisols are widely distributed. Mean annual precipitation increase 110 mm, and mean annual temperature decrease $0.8^{\circ}C$ with increasing elevation of 100m. In the western, and northern mid-mountaineous areas Andisols, and non Andisols are distributed simultaneously. Jeju series distributed mainly in the western and northern mid-mountaineous areas are developed as Ultisols with Andic subgroup.

The Early Experience with a Laparoscopy-assisted Pylorus-preserving Gastrectomy: A Comparison with a Laparoscopy-assisted Distal Gastrectomy with Billroth-I Reconstruction (복강경 보조 유문부보존 위절제술의 초기 경험: 복강경 보조 원위부 위절제술 후 Billroth-I 재건술과의 비교)

  • Park, Jong-Ik;Jin, Sung-Ho;Bang, Ho-Yoon;Chae, Gi-Bong;Paik, Nam-Sun;Moon, Nan-Mo;Lee, Jong-Inn
    • Journal of Gastric Cancer
    • /
    • v.8 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • Purpose: Pylorus-preserving gastrectomy (PPG), which retains pyloric ring and gastric function, has been accepted as a function-preserving procedure for early gastric cancer for the prevention of postgastrectomy syndrome. This study was compared laparoscopy-assisted pylorus-preerving gastrectomy (LAPPG) with laparoscopy-assisted distal gastrectomy with Billroth-I reconstruction (LADGB I). Materials and Methods: Between November 2006 and September 2007, 39 patients with early gastric cancer underwent laparoscopy-assisted gastrectomy in the Department of Surgery at Korea Cancer Center Hospital. 9 of these patients underwent LAPPG and 18 underwent LADGBI. When LAPPG was underwent, we preserved the pyloric branch, hepatic branch, and celiac branch of the vagus nerve, the infrapyloric artery, and the right gastric artery and performed D1+$\beta$ lymphadenectomy to the exclusion of suprapyloric lymph node dissection. The distal stomach was resected while retaining a $2.5{\sim}3.0\;cm$ pyloric cuff and maintaining a $3.0{\sim}4.0\;cm$ distal margin for the resection. Results: The mean age for patients who underwent LAPPG and LADGBI were $59.9{\pm}9.4$ year-old and $64.1{\pm}10.0$ year-old, respectively. The sex ratio was 1.3 : 1.0 (male 5, female 4) in the LAPPG group and 2.6 : 1.0 (male 13, female 5) in the LADGBI group. Mean total number of dissected lymph nodes ($28.3{\pm}11.9$ versus $28.1{\pm}8.9$), operation time ($269.0{\pm}34.4$ versus $236.3{\pm}39.6$ minutes), estimated blood loss ($191.1{\pm}85.7$ versus $218.3{\pm}150.6\;ml$), time to first flatus ($3.6{\pm}0.9$ versus $3.5{\pm}0.8$ days), time to start of diet ($5.1{\pm}0.9$ versus $5.1{\pm}1.7$ days), and postoperative hospital stay ($10.1{\pm}4.0$ versus $9.2{\pm}3.0$ days) were not found significant differences (P>0.05). The postoperative complications were 1 patient with gastric stasis and 1 patient with wound seroma in LAPPG group and 1 patient with left lateral segment infarct of liver in the LADGB I group. Conclusion: Patients treated by LAPPG showed a comparable quality of surgical operation compared with those treated by LADGBI. LAPPG has an important role in the surgical management of early gastric cancer in terms of quality of postoperative life. Randomized controlled studies should be undertaken to analyze the optimal survival and long-term outcomes of this operative procedure.

  • PDF

Weed Occurrence in Upland Crop Fields of Korea (최근(最近) 한국(韓國)의 전작지(田作地) 잡초발생(雜草發生) 분포(分布)에 관(關하)여)

  • Chang, Y.H.;Kim, C.S.;Youn, K.B.
    • Korean Journal of Weed Science
    • /
    • v.10 no.4
    • /
    • pp.294-304
    • /
    • 1990
  • For the survey of weed distribution in the cultivated upland of Korea, weed species were investigated at 2 field by crop of 2 myon per kun in 81 kun selected among the 139 kun of the whole country. 232 species in 46 families were observed, totally. From among the result, 165 species in 39 families the in winter crop field, 189 species in 41 families in the summer crop field were classified. 122 species in 34 families were emerged the from the upland crop field of the whole season. Further more, in the 10 dominant weed species which emerged from upland crop field, Alopecurus aequalis, Chenopodium album, slellaria media, Galium spurieum, Capsella bursa-pastoris and Rorippa islandica were dominated in the winter upland and paddy field, and that Erigeron canadensis, Cyperus amuricus, Equisetum arvense and Arenaria serpyllifolia were dominated in the winter upland field, additionally. Stellaria alsine, Bothriospermum tenellum, Trigonotis peduncularis and Polygonum arviculare were dominated in the winter cropping on drained paddy field, additionally. In the summer crop field, Digitaria sanguinalis, Portulaca oleracea, Acalypha australis, Echinochloa crus-galli, Setaria viridis, Persicaria hydropiper, Amaranthus lividus, commelina communis, Chenopodium album and Cyperecs amuricus were dominated.

  • PDF

Changes of Weed Community in Lowland Rice Field in Korea (한국(韓國)의 논 잡초분포(雜草分布) 현황(現況))

  • Park, K.H.;Oh, Y.J.;Ku, Y.C.;Kim, H.D.;Sa, J.K.;Park, J.S.;Kim, H.H.;Kwon, S.J.;Shin, H.R.;Kim, S.J.;Lee, B.J.;Ko, M.S.
    • Korean Journal of Weed Science
    • /
    • v.15 no.4
    • /
    • pp.254-261
    • /
    • 1995
  • The nationwide weed survey was conducted in lowland rice fields over whole country of Korea in 1992 in order to determine a change of weed community and to identify a major dominant weed species and/or problem weed. Based on morphological characteristics of weeds, population ratio of broad leaf weed was 42.6%, grasses weed-9.0%, sedges-33.4% and others were 15.0%. Annual weed was 33.4% while perennial weed was 66.6% in terms of life cycle of weeds. Meanwhile, there was different weed occurrence as affected by planting method of the rice plant. In hand transplanted paddy fields predominant weed species was Sagittaria trifolia L., Monochoria vaginalis Presl., and Aneilema japonica Kunth. In machine transplanted rice fields of infant and young rice seedling Eleocharis kuroguwai Ohwi. and S. trifolia L. were more predominant. There was high occurrence of M. vaginalis, Echinochloa crus-galli L., and Leesia japonica Makino in water seeding while E. crus-galli and Cyperus serotinus Rottb. were predominant weed species in dry seeded rice. Monoculture of the rice plant would cause to high occurrence of E. kuroguwai, S. trifolia, M. vaginalis, E. crus-galli, and Sagittaria pygmaea Miq and there was higher population of S. trifolia, S. pygmaea, M. vaginalis, E crus-galli, and E. kuroguwai in double cropping system based on rice culture. In particular, there was high different weed occurrence under different transplanting times. E. kuroguwai, S. trifolia, S. pygmaea, M. vaginalis, and C. serotinus were higher population at the transplanting of 25 May and S. trifolia, E crus-galli, C. serotinus, and M. vaginalis at 10 June and S. pygmaea, E. kuroguwai, M. vaginalis, S. trifolia, and E. crusgalli at 25 June in Korea, respectively. Autumn tillage in terms of tillage time would cause more predominant weed species such as S. trifolia, E. kuroguwai, M. vaginalis, and S. pygmaea while spring tillage was higher population of E. kuroguwai, S. trifolia, E. crusgalli, M. vaginalis, and S. pygmaea. In plain area of paddy field there was higher occurrence of E. kuroguwai, S. trifolia, M. vaginalis, E. crus-galli, and S. pygmaea and in mid-mountainous area S. trifolia, E. kuroguwai, M. vaginalis, E. crus-galli, and Ludwigia prostrate Roxb. while in mountainous area S. trifolia, M. vaginalis, Potamogeton distinctus Ben., E. kuroguwai, and E. crus-galli were. In 1992 the most ten predominant weed species at the rice field of Korea based on summed dominant ratio(SDR) were E. kuroguwai > S. trifolia > E. crus-galli > M. vaginalis > S. pygmaea > C. serotinus > L. prostrate > P. distinctus > A. japonica > Scirpus juncoides Roxb.

  • PDF