• Title/Summary/Keyword: 간이 건강측정장비

Search Result 23, Processing Time 0.017 seconds

A Goodness of Fit and Validity Study of the Korean Radiological Technologists' Core Job Com petency Model (방사선사 핵심 직무역량 모델의 적합성 및 타당성 검증)

  • Lim, Chang-Seon;Cho, A Ra;Hur, Yera;Choi, Seong-Youl
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.469-484
    • /
    • 2017
  • Radiological Technologists deals with the life of a person which means professional competency is essential for the job. Nevertheless, there have been no studies in Korea that identified the job competence of radiologists. In order to define the core job competencies of Korean radiologists and to present the factor models, 147 questionnaires on job competency of radiology were analyzed using 'PASW Statistics Version 18.0' and 'AMOS Version 18.0'. The valid model consisted of five core job competencies ('Patient management', 'Health and safety', 'Operation of equipment', 'Procedures and management') and 17 sub - competencies. As a result of the factor analysis, the RMSEA value was 0.1 and the CFI, and TLI values were close to 0.9 in the measurement model of the five core job competencies. The validity analysis showed that the mean variance extraction was 0.5 or more and the conceptual reliability value was 0.7 or more, And there was a high correlation between subordinate competencies included in each subordinate competencies. The results of this study are expected to provide specific information necessary for the training and management of human resources centered on competence by clearly showing the job competence required for radiologists in Korea's health environment.

Evaluation of Reference Intervals of Some Selected Chemistry Parameters using Bootstrap Technique in Dogs (Bootstrap 기법을 이용한 개의 혈청검사 일부 항목의 참고범위 평가)

  • Kim, Eu-Tteum;Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.24 no.4
    • /
    • pp.509-513
    • /
    • 2007
  • Parametric and nonparametric coupled with bootstrap simulation technique were used to reevaluate previously defined reference intervals of serum chemistry parameters. A population-based study was performed in 100 clinically healthy dogs that were retrieved from the medical records of Kangwon National University Animal Hospital during 2005-2006. Data were from 52 males and 48 females(1 to 8 years old, 2.2-5.8 kg of body weight). Chemistry parameters examined were blood urea nitrogen(BUN)(mg/dl), cholesterol(mg/dl), calcium(mg/dl), aspartate aminotransferase(AST)(U/L), alanine aminotransferase(ALT)(U/L), alkaline phosphatase(ALP)(U/L), and total protein(g/dl), and were measured by Ektachem DT 60 analyzer(Johnson & Johnson). All but calcium were highly skewed distributions. Outliers were commonly identified particularly in enzyme parameters, ranging 5-9% of the samples and the remaining were only 1-2%. Regardless of distribution type of each analyte, nonparametric methods showed better estimates for use in clinical chemistry compare to parametric methods. The mean and reference intervals estimated by nonparametric bootstrap methods of BUN, cholesterol, calcium, AST, ALT, ALP, and total protein were 14.7(7.0-24.2), 227.3(120.7-480.8), 10.9(8.1-12.5), 25.4(11.8-66.6), 25.5(11.7-68.9), 87.7(31.1-240.8), and 6.8(5.6-8.2), respectively. This study indicates that bootstrap methods could be a useful statistical method to establish population-based reference intervals of serum chemistry parameters, as it is often the case that many laboratory values do not confirm to a normal distribution. In addition, the results emphasize on the confidence intervals of the analytical parameters showing distribution-related variations.

Use of Chicken Meat and Processing Technologies (가금육의 이용과 가공기술)

  • Ahn, Dong-Uk
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2003.07b
    • /
    • pp.67-88
    • /
    • 2003
  • The consumption of poultry meat (chicken and turkey) grew the most during the past few decades due to several contributing factors such as low price. product research and development. favorable meat characteristics, responsive to consumer needs, vertical integration and industry consolidation, new processing equipments and technology, and aggressive marketing. The major processing technologies developed and used in chicken processing include forming/restructuring, tumbling, curing, smoking, massaging, injection, marination, emulsifying, breading, battering, shredding, dicing, and individual quick freezing. These processing technologies were applied to various parts of chicken including whole carcass. Product developments using breast, thigh, and mechanically separated chicken meat greatly increased the utilization of poultry meat. Chicken breast became the symbol of healthy food, which made chicken meat as the most frequent menu items in restaurants. However, the use of and product development for dark meat, which includes thigh, drum, and chicken wings were rather limited due to comparatively high fat content in dark meat. Majority of chicken are currently sold as further processed ready-to-cook or ready-to-eat forms. Major quality issues in chicken meat include pink color problems in uncured cooked breast, lipid oxidation and off-flavor, tenderness PSE breast, and food safety. Research and development to ensure the safety and quality of raw and cooked chicken meat using new processing technologies will be the major issues in the future as they are now. Especially, the application of irradiation in raw and cooked chicken meat products will be increased dramatically within next 5 years. The market share of ready-to-eat cooked meat products will be increased. More portion controlled finished products, dark meat products, and organic and ethnic products with various packaging approaches will also be introduced.

  • PDF