• Title/Summary/Keyword: 간섭 보호비

Search Result 69, Processing Time 0.025 seconds

The Coexistence Solution using Transmission Schedule and User's Position Information in Cognitive Radio Networks (전송 스케줄 및 사용자 위치 정보를 이용한 무선 인지 네트워크의 동일 주파수 대역 공존 방안)

  • Lee, Kyu-Ho;Choi, Jae-Kark;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3B
    • /
    • pp.189-203
    • /
    • 2012
  • In cognitive radio networks, a secondary user opportunistically accesses an empty channel based on periodic sensing results for avoiding possible interference to the primary users. However, local sensing does not guarantee the full protection of the primary users because hidden primary receivers may exist within the interference range of the secondary transmitter. To protect primary systems and simultaneously to maximize utilization of the secondary users, we need to derive carefully designed coexistence solutions for various network scenarios. In this paper, we propose coexistence conditions without any harmful interference in accordance with the uplink/downlink schedule and user position. We have classified the coexistence conditions into four different scenario cases depending on the provided information to the secondary network basestations. Computer simulation results demonstrated that the proposed method can be applied to the real cognitive radio system to improve the communication probability of CR devices.

A Study on A Mathematical Formulation of Protection Ratio and Its Calculation for Fixed Radio Relay System with Diversity (다이버시티를 갖는 고정 무선 중계 시스템에 대한 보호비의 수학적 표현과 계산에 대한 연구)

  • Suh Kyoung-Whoan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.4 s.107
    • /
    • pp.358-367
    • /
    • 2006
  • In this paper, a mathematical formulation of protection ratio and its calculation method are suggested for a radio relay system with diversity techniques. The analysis of protection ratio and its physical meaning have been performed for the space or frequency diversity system, and in particular protection ratios are reviewed in terms of the parameters of diversity improvement factor, which comprises antenna gain, separation distance between antennas, frequency and its difference between carriers, and distance. As one of simulated results, the co-channel protection ratio of 60 dB is obtained for the space diversity system regarding 6.2 GHz, 60 km, 64-QAM, and 25 m between antennas, which gives 15 dB less than the co-channel protection ratio of the non-space diversity system. In addition, the co-channel protection ratio for the frequency diversity system gives 64 dB in case of frequency offset of 0.5 GHz under the same conditions as the space diversity system, which brings about 11 dB less than the co-channel protection ratio of non-frequency diversity system. In consequency, it is interesting to note that the space diversity system is less sensitive to interference in comparison to the frequency diversity system and provides better quality of service for a given interference.

Methodology of Interference Analysis Between TACAN/DME Beacons and Ground-based Link-16 Terminals (TACAN/DME 비콘과 Link-16 지상국 간의 간섭분석 방법)

  • Suh, Kyoung-Whoan
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • In this paper, the method of interference analysis and its simulation have been suggested for the frequency sharing between aeronautical radio navigation systems and Link-16 platforms. In order to get the criteria for interoperability, the algorithm of interference analysis and protection ratio are derived to assure frequency sharing. Also the receiving power of wireless system has been illustrated with the help of radio propagation model of ITU-R Rec. P.1546 in VHF-UHF band. Finally the required receiving power or separation distance between DME/TACAN beacons and Link-16 ground station terminals has been considered based on system link budget in terms of evaluating interoperability as well as actual applications. As a result, if the suggested interference analysis and test set-up are applied to the field trial, it will lead to easy means to make a decision on interoperability over the existing incumbent systems.

Performance Analysis of OFDMA Uplink Systems with Symbol Timing Misalignment (사용자간 상대적인 시간오차에 의한 OFDMA 역방향 시스템의 성능 분석)

  • Park Myonghee;Hong Daesik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.2 s.332
    • /
    • pp.17-22
    • /
    • 2005
  • This paper presents our investigation for the effect of symbol timing errors in orthogonal frequency division multiple access (OFDMA) uplink systems. We express the symbol timing errors between users as the symbol timing misalignments with respect to the desired user. Then, we derive an explicit expression of the average effective signal-to-interference-plus-noise ratio. (SINR) as a function of the maximum value of the symbol timing misalignments. Based on the resulting SINR degradation, we evaluate the SINR gain with guard subcarriers in order to mitigate the effect of the symbol timing misalignments.

Interference Analysis of Wireless Systems with Arbitrary Antenna Patterns and Geographic Information in the VHF/UHF Bands (VHF/UHF 대역에서 지리정보와 임의 안테나 패턴을 갖는 무선시스템의 간섭분석 연구)

  • Suh, Kyoung-Whoan
    • Journal of Broadcast Engineering
    • /
    • v.18 no.3
    • /
    • pp.445-454
    • /
    • 2013
  • By using the radio propagation prediction of Rec. ITU-R P.1546, geographic information system, and S-I plane, we presented the methodology of interference analysis based on the minimum coupling loss, and also suggested the local coordinate system for calculating azimuth and elevation angles between the victim receiver and the interferer for an arbitrary antenna pattern. To check the presented algorithm, the map with the land-sea mixed area was taken for the given area of $80{\times}60[km^2]$ as real geography information. Field strength, path profile, and protection ratio with maximum allowable interference level have been illustrated for radar and fixed wireless system for the assumed frequency. In addition interference power of the victim receiver was calculated asa function of azimuth and elevation angles of the interferer. The developed methodology of interference analysis in the VHF and UHF bands can be actually applied to assess interoperability as well as compatibility in the civil or military applications.

A Study on Frequency Coordination between the Same or Different Wireless Systems based upon Minimum Coupling Loss (최소결합손실 기반의 동종 또는 이종 무선시스템 간의 주파수 조정에 대한 연구)

  • Suh, Kyoung-Whoan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.63-72
    • /
    • 2018
  • Theoretical modelling and computational results for frequency coordination are presented based upon minimum coupling loss regarding the same or different wireless systems. Essential parameters involved in frequency coordination are discussed in view of system characteristics, propagation model, availability and protection ratio, frequency dependent rejection or adjacent channel interference ratio, discrimination angle, and its computational results are also evaluated. To illustrate frequency coordination procedure, received interference power between fixed wireless system of victim and mobile base station of interferer are analyzed in urban or sub-urban area and also compared with maximum allowable interference power as functions of discrimination angle and distance for assumed system parameters. The proposed method will play a practical role in technical analysis on co-existence or interoperability for the various wireless systems needed for frequency coordination.

Derivation of Protection Ratio and its Calculation for Microwave Relay System Based upon Composite Fade Margin and Availability (합성 페이드 마진 및 가용율에 근거한 M/W 중계 시스템의 보호비 유도 및 계산)

  • Suh, Kyoung-Whoan;Lee, Joo-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.341-350
    • /
    • 2007
  • In this paper, the derivation of protection ratio is newly proposed for the detailed planning of frequency coordination in microwave relay networks, and computed results for protection ratio of co-channel and adjacent channel are illustrated over the actual system and its frequency. It is shown that the suggested method based upon availability prediction can be expressed in terms of composite fade margin, interference-to-noise ratio(I/N), net filter discrimination, and system parameters. According to results, for 6.7 GHz, 60 km, 64-QAM, and I/N= -6 dB at BER $10^{-6}$, composite fade margin and co-channel protection ratio provide 25.5 and 50.7 dB, respectively. Also, net filter discrimination and adjacent channel protection ratio are obtained as 26.3 and 24.4 dB, respectively, at the first adjacent channel of 40 MHz. The proposed method provides some merits in computing protection ratio for microwave relay networks in view of an easy extension and practical applications considering more detailed and various system parameters.

Study on Radiation Limit of ISM Equipment for Protecting Radio Device (무선기기 보호를 위한 ISM 기기의 방사 한계치에 관한 연구)

  • Shim, Yong-Sup;Lee, Il-Kyoo;Hong, Seon-Eui
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.2
    • /
    • pp.10-14
    • /
    • 2011
  • This paper suggests the method to calculate radiation limit of ISM(Industrial Scientific Medical) equipment in order to protect radio device in the situation that ISM equipment and radio device are operated in near distance. The factor for correction and protection ratio which is need for protecting radio device were considered to calculate radiation limit of ISM equipment. Also, the scenario which is required to limit radiation power of ISM equipment was referred and the S/W for calculation of radiation limit was developed by using GUI(Graphical User Interface) on Matlab. The suggested method for calculation of radiation limit of ISM equipment will be used to protect radio device from ISM equipment.

Cell Radius & Guard Band Requirements by Mutual Interference Investigation between Satellite Digital Systems using Gap-filler (Gap-filler를 이용하는 위성 DMB 시스템 간의 상호간섭분석에 의한 보호대역 및 적정 셀 반경 설정)

  • Cha Insuk;Park SungHo;Chang KyungHi;You Heung-Ryeol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6A
    • /
    • pp.499-509
    • /
    • 2005
  • The capacity of Satellite DMB(Digital Multimedia Broadcasting) system is limited mainly by the interference. So, to achieve the expected performance of Satellite DMB system and to minimize the interference from other Satellite DMB system, ACI(Adjacent Channel Interference) should be considered carefully. Satellite DMB system uses the Gap-filler for effective transmission in terrestrial environment, and the Gap-filler can use direct amplification or frequency conversion to satisfy the specific requirements. Therefore, amplified signal causes several effects on interference between System A(Eureka 147 DAB) and System E(ISDB : Integrated services Digital Broadcasting). In this paper, by using the outcome of system-level simulation considering the results of link-level simulation, we analyze the interferences between System A and System E under practical situation based on the exact parameters of ITU-R BO. 1130-4. We also propose the appropriate level of guard band and Cell Radius to optimize system capacity by adapting the spectrum mask given in the spec. and utilizing the interference analysis between System A and System E.

A Study on Frequency Coordination between Fixed Wireless System and Mobile Base Station in Urban or Sub-urban Area (도심 또는 부도심에서 고정무선시스템과 이동기지국 간의 주파수 조정에 대한 연구)

  • Suh, Kyoung-Whoan;Park, Young-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.41-49
    • /
    • 2017
  • Theoretical modelling and computational results for frequency coordination are presented over mobile base station and fixed wireless systems in urban or sub-urban area. Computational results with key parameters needed for interference analysis are performed and discussed in terms of system characteristics, propagation model, protection ratio, frequency dependent rejection, and discrimination angle with signal-interference plane. Based upon minimum coupling loss methodology, calculated interference powers of victim receiver for assumed system parameters are compared with maximum allowable interference power derived from protection ratio as functions of discrimination angle and distance including height-gain model in urban or sub-urban area. The proposed method is applicable for technical analysis on co-existence or interoperability for the various wireless systems, mandatory for frequency coordination or reallocation process.