• Title/Summary/Keyword: 간섭피크 보정

Search Result 2, Processing Time 0.017 seconds

A study on quantification of α-quartz, cristobalite, kaolinite mixture in respirable dust using by FTIR (FTIR를 이용한 호흡성 분진중 α-quartz, cristobalite, kaolinite 혼합물 정량 분석 연구)

  • Eun Cheol Choi;Seung Ho Lee
    • Analytical Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.315-323
    • /
    • 2023
  • This study is to quantify α-quartz, cristobalite and kaolinite using by FTIR in respirable dust generated in the mining workplace. Various minerals in mines can interfere with peaks when quantifying respirable crystalline silica by FTIR. Therefore, for accurate quantification, it is necessary to remove interfering substances or correct the peaks that cause interference. To confirm the peaks occurring in α-quartz, cristobalite and kaolinite, each standard material was diluted with KBr and scanned in the range of 400 cm-1 to 4000 cm-1 using by FTIR. As a result of scanning the analytes, it was decided to use the peaks of 797.66 cm-1 and 695.25 cm-1 for α-quartz, 621.58 cm-1 for cristobalite, and 3696.47 cm-1 for kaolinite. When the above materials are mixed, interference occurs at the peak for quantification, which is corrected by the calculation formula. The analysis of the mixture of α-quartz and cristobalite shows the average bias (%) of 2.64 (corrected) at α-quartz (797.66 cm-1), 5.61 (uncorrected) at α-quartz (695.25 cm-1) and 1.51 (uncorrected) at cristobalite (621.58 cm-1). The analysis of the mixture of α-quartz and kaolinite shows the average bias(%) of 1.79(corrected) at α-quartz (797.66 cm-1), 3.92 (corrected) at α-quartz (695.25 cm-1) and 2.58 (uncorrected) at kaolinite (3696.47 cm-1). The analysis of the mixture of cristobalite and kaolinite shows the average bias (%) of 2.15 (corrected) at cristobalite (621.58 cm-1), 4.32 (uncorrected) at kaolinite (3696.47 cm-1). The analysis of the mixture of αquartz and cristobalite and kaolinite shows the average bias (%) of 1.93(corrected) at α-quartz (797.66 cm-1), 6.47 (corrected) at α-quartz (695.25 cm-1) and 1.77 (corrected) at cristobalite (621.58 cm-1) and 2.61 (uncorrected) at kaolinite (3696.47 cm-1). The experimental results showed that the deviation caused by peak interference by two or three substances could be corrected to less than 6 % of the average deviation. This study showed the possibility of correcting and quantifying when various interfering substances that are difficult to remove are mixed.

Feasibility about the Direct Measurement of 226Ra Using the Gamma-Ray Spectrometry (감마분광분석을 이용한 226Ra의 직접 측정방법에 대한 적용성 평가)

  • Ji, Young-Yong;Chung, Kun Ho;Lim, Jong-Myoung;Kim, Change-Jong;Jang, Mee;Kang, Mun Ja;Park, Sang Tae;Woo, Zuhee;Koo, Boncheol;Seo, Bokyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.97-105
    • /
    • 2014
  • In the case of the direct measurement of $^{226}Ra$ using a HPGe gamma-ray spectrometer, the interference between gammarays with 186.21 keV of $^{226}Ra$ and 185.7 keV of $^{235}U$ should be corrected to calculate the net peak area in the energy spectrum. In general, it is very difficult to conduct peaks stripping with difference of about 0.5 keV, although a HPGe with the superior resolution is applied and the maximum channels is applied to the spectrometer. In this study, several interference correction techniques in the direct measurement were surveyed to evaluate the feasibility for the measurement of $^{226}Ra$ using the gamma-ray spectrometery. Applying the interference corrections to the analysis of raw materials and by-products, the method validation for the direct measurement of $^{226}Ra$ was conducted by evaluating the measurement uncertainty, linearity, and range. As a result, the optimum method of the interference correction was selected by comparing with the indirect measurement of which progenies of $^{226}Ra$, such as $^{214}Pb$ and $^{214}Bi$, were analyzed in the secular equilibrium state.