• Title/Summary/Keyword: 간섭보호거리

Search Result 43, Processing Time 0.026 seconds

Analysis of Interference Protection Criteria for Interoperability of Radar Systems (레이다 시스템 상호 간 운용을 위한 간섭 보호 기준 분석)

  • Kim, Jung;Jung, Jung-Soo;Kwag, Young-Kil;Kim, Jin-Goog;Jeon, Young-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.434-441
    • /
    • 2014
  • Recently, a mutual interference threat has been increasing among the radar systems due to the rapid growth of the military radar operation. In this paper, the radar interference protection criteria is presented for interoperability in terms of the radar coverage and target detection probability in association with the international recommendation on the interference spectrum by ITU-R. The required criteria for the minimum allowable interference is also presented in terms of INR. In order to ensure the maximum detection probability of the radar under the mutual interference situation, only 5 % of detection range loss is allowed for the case of INR of -6 dB, and required SNR is presented at each INR in terms of the detection range and detection probability. This result will be useful for establishing the interference protection criteria in the combined military radar systems.

Channel Interference Analysis of Wideband WLAN Based IEEE802.11n for 3rd Generation Digital Signage (3세대 디지털 사이니지를 위한 IEEE802.11n 광대역 무선랜에 대한 채널 간섭 분석)

  • Ko, Hojeong
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.1
    • /
    • pp.6-11
    • /
    • 2016
  • In this paper, we have analyzed the effects of co-channel, adjacent-channel, and the human shield(Body Blockage) for wideband WLAN based on the IEEE802.11n 40MHz channel bandwidth required for high speed digital signage service. Simulation results show that wideband WLAN can be operated with 78 interferers over 63m distance in co- channel, 80 interferer over 61m distance in adjacent channel. By applying the mitigation method for reducing the interference, we have confirmed that protection distance is improved to 51m using beamforming, and 40m using cognitive radio in co-channel interference. Also body blockage interference is reduced using adaptive channel bandwidth, C/I ratio, beamforming, power control mitigation methodology.

A Study on the Interference Impact between Wi-Fi Cellular Phone and Electronic Shelf Label system of Tag (Wi-Fi 기반의 무선단말기와 ESL Tag간의 간섭영향 연구)

  • Yun, Hyeju;Lee, Ilkyoo
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.2
    • /
    • pp.101-106
    • /
    • 2014
  • As ESL(Electronic Shelf Label) system is increased at the market in the world, the interference between ESL system and Wi-Fi(Wireless Fidelity) Cellular Phone at 2.4GHz becomes issue. The interference scenario and propagation of the Extended HATA Model were established to analyze the interference from Wi-Fi Cellular Phone into ESL system. Through simulation results based on SEAMCAT(Spectrum Engineering Advanced Monte Carlo Analysis Tool), separation distance was obtained to protect ESL system from Wi-Fi Cellular Phone interference.

Study on Compatibility between WPT Device at ISM band and Radio Modem (ISM 대역의 WPT 기기와 무선 모뎀의 공존 방안 연구)

  • Kim, SeungNam;Lee, Ilkyoo;Min, Kyoungil
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.4
    • /
    • pp.47-52
    • /
    • 2014
  • Recently, the interest of Wireless Power Transmission(WPT) has been increased for Mobile device application. It is necessary to analyze interference between wireless devices for the efficient use of frequency resource. The Minimum Coupling Loss(MCL) method and the Monte Carlo(MC) method were used for the interference analysis. In this paper, the impact of the 3rd order harmonics of the wireless charger for Cellular Phone on the existing Radio Modem was analyzed. As a result, the separation distance and the allowable number of interferer on the basis of service radius were obtained to protect the Radio Modem from the wireless charger for Cellular Phone.

Analysis of the Protection Ratio of GPS System in the Presence of RF Interference Radiated by UWB System (UWB 시스템의 간섭 신호에 대한 GPS 보호 비 분석)

  • Cho, In-Kyoung;Shim, Yong-Sup;Lee, Il-Kyoo;Cho, Hyun-Mook;Hong, Hyun-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.208-213
    • /
    • 2011
  • This paper analyzes potential interference effects of Ultra Wide Band(UWB) on Global Positioning System(GPS) which is providing safety service. For the interference analysis, positioning error method is used to determine the minimum protection distance to meet positioning error of 2.5 m below and Minimum Coupling Loss(MCL) method is used to determine the required protection ratio(I/N) from the protection distance of UWB transmitter and GPS receiver to meet positioning error of 2.5 m below. In a result, the minimum protection distance to meet positioning error of 2.5 m below was about 10 m and the protection ratio to meet positioning error 2.5 m below was -20 dB. The protection ratio proposed in this paper is the same value of the protection ratio of safety service proposed by ITU-R. The obtained protection ratio can be used for the protection standard of domestic GPS system for the safe of life service.

A Study on A Mathematical Formulation of Protection Ratio and Its Calculation for Fixed Radio Relay System with Diversity (다이버시티를 갖는 고정 무선 중계 시스템에 대한 보호비의 수학적 표현과 계산에 대한 연구)

  • Suh Kyoung-Whoan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.4 s.107
    • /
    • pp.358-367
    • /
    • 2006
  • In this paper, a mathematical formulation of protection ratio and its calculation method are suggested for a radio relay system with diversity techniques. The analysis of protection ratio and its physical meaning have been performed for the space or frequency diversity system, and in particular protection ratios are reviewed in terms of the parameters of diversity improvement factor, which comprises antenna gain, separation distance between antennas, frequency and its difference between carriers, and distance. As one of simulated results, the co-channel protection ratio of 60 dB is obtained for the space diversity system regarding 6.2 GHz, 60 km, 64-QAM, and 25 m between antennas, which gives 15 dB less than the co-channel protection ratio of the non-space diversity system. In addition, the co-channel protection ratio for the frequency diversity system gives 64 dB in case of frequency offset of 0.5 GHz under the same conditions as the space diversity system, which brings about 11 dB less than the co-channel protection ratio of non-frequency diversity system. In consequency, it is interesting to note that the space diversity system is less sensitive to interference in comparison to the frequency diversity system and provides better quality of service for a given interference.

Analysis on the Minimum Separation Distance for Spectrum Sharing between IMT and FSS systems in C Band (C 대역에서 IMT와 FSS 시스템간 주파수 공유를 위한 최소 이격거리 분석)

  • Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.907-915
    • /
    • 2009
  • Spectrum sharing between wireless systems becomes a critical issue due to emerging new technologies and spectrum shortage. Recently, IMT system has been allocated in the same frequency C band (3400-4200MHz) along with FSS services on co-primary basis, which means that harmful interference probability may be inspired. In this paper, to estimate the spectrum sharing between IMT and FSS systems, the minimum separation distances have been evaluated considering major factors such as the clutter loss in some areas and the elevation angle of FSS earth station, and using I/N=-10dB which is fundamental criterion for coexistence.

  • PDF

Study on the Spectrum Sharing between IMT and FSS Systems Considering MIMO SDMA Interference Mitigation Technique in C Band (C 대역에서 MIMO SDMA 간섭경감기법을 고려한 IMT와 FSS 시스템간 주파수 공유 연구)

  • Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.587-595
    • /
    • 2010
  • Spectrum sharing between wireless systems becomes a critical issue clue to emerging new technologies and spectrum shortage. Recently, IMT system has been allocated in the same frequency C band (3400-4200MHz) along with FSS services on co-primary basis which means that harmful. interference probability may be inspired. In this paper, to estimate the spectrum sharing between IMT and FSS systems, I propose the minimum separation distances as a sharing criterion of I/N=-10dB using the interference to noise ratio(I/N) received at the reference FSS earth station from IMT multiple base station. Especially, same results imply that I/N values can be greatly reduced with MMO SDMA interference mitigation technique of IMT base station so that FSS and IMT systems can co-exist in the sam e frequency with appropriate separation distance.

Analysis on the Impact of UWB Sensor on Broadband Wireless Communication System (UWB 센서에 의한 광대역 무선 시스템의 간섭 영향 분석)

  • Cheng, Yan-Ming;Lee, Il-Kyoo;Lee, Yong-Woo;Oh, Seung-Hyeub;Cha, Jae-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.3
    • /
    • pp.83-89
    • /
    • 2010
  • This paper presents the impacts of Ultra Wide-Band(UWB) sensor using frequency of 4.5 GHz on Broadband Wireless communication system which uses frequency of 4.5 GHz. The Minimum Coupling Loss (MCL) method and Spectrum Engineering Advanced Monte Carlo Analysis Tool (SEAMCAT) is used to evaluate the interference effects of UWB sensor on Broadband Wireless communication system, respectively. The minimum protection distance between single UWB sensor and mobile station of Broadband Wireless communication system should be more than 1.2 m to guarantee the co-existence. In case of multiple UWB sensors, UWB transmitting PSD of around -68.5 dBm/MHz below should be required to guarantee interference probability of 5% below for mobile station of Broadband Wireless communication system.

A Study on Frequency Coordination between Fixed Wireless System and Mobile Base Station in Urban or Sub-urban Area (도심 또는 부도심에서 고정무선시스템과 이동기지국 간의 주파수 조정에 대한 연구)

  • Suh, Kyoung-Whoan;Park, Young-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.41-49
    • /
    • 2017
  • Theoretical modelling and computational results for frequency coordination are presented over mobile base station and fixed wireless systems in urban or sub-urban area. Computational results with key parameters needed for interference analysis are performed and discussed in terms of system characteristics, propagation model, protection ratio, frequency dependent rejection, and discrimination angle with signal-interference plane. Based upon minimum coupling loss methodology, calculated interference powers of victim receiver for assumed system parameters are compared with maximum allowable interference power derived from protection ratio as functions of discrimination angle and distance including height-gain model in urban or sub-urban area. The proposed method is applicable for technical analysis on co-existence or interoperability for the various wireless systems, mandatory for frequency coordination or reallocation process.