• Title/Summary/Keyword: 간극수압 측정

Search Result 94, Processing Time 0.046 seconds

A Laboratory Test for Detecting the Infiltrating Characteristics of Unsaturated Soil in Soil Slide (흙사면 절개지 불포화토의 침투거동 특성에 관한 연구)

  • Kim Man-Il;Chae Byung-Gon;Jeong Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.487-494
    • /
    • 2005
  • In order to estimated a reason of soil slope failure new measurement technology is demanded to measure a variation of volumetric water content which is a key physical parameter for understanding the slope failure in the field. In this study a laboratory soil tank test were conducted to use RDB and ADR measurement probes for measuring the variation of volumetric water content. These experiments were compared with two physical parameters as volumetric water content and pressure water head which are estimated to the compacted weathered granite soil under the artificial rainfall, 7.5mm/hour, in the whole of two stages. From the results the variation of volumetric water content and pressure water head is represented to nearly similar travel time.

Lateral Stress and Pore Pressure During One-dimensional Consolidation of Clay (점토의 일차원 압밀과정중 작용하는 수평토압과 간극수압)

  • 김재영
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.5-10
    • /
    • 2004
  • The earth pressure coefficient at rest for clayey soils in the one-dimensional state, $K_0$ obtained from the triaxial test is not correct in principle because the seepage flow is radial and the displacement of soil elements is three-dimensional. Measurements of the earth pressure and the pore water pressure during one-dimension consolidation in the consolidometer ring are presented. The earth pressure and pore water pressure are measured directly by a circular part of the consolidometer ring of a floating type at its mid height. A plastic clay showed $K_0$=0.5 irrespective of pressure in the consolidometer ring.

Application of Resistivity/SP Monitoring Technique to Maintenance of Water Utilization Facilities (수리시설물의 유지관리를 위한 비저항/SP 모니터링기법 연구)

  • Park, Sam-Gyu;Kim, Jung-Ho;Seo, Goo-Won;Won, Jong-Geun;Kim, Byung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.71-76
    • /
    • 2005
  • The subject of this paper is research into the application of resistivity/SP monitoring to detecting the water leakage of water utilization facilities. For this purpose, we installed a comprehensive monitoring system consisting of resistivity/SP measurement, inclinometer, piezometer, and water gauge at an embankment, Using this monitoring system, we monitored the various kinds of measurement data and compared the resistivity structures and SP variations that of hydrological and engineering data in order to investigate the water leakage and stability of the embankment. The variations of resistivity and SP at the embankment were provided from the monitoring data and we could accurately locate the portions of which resistivities and SP have sharply changed, Furthermore, we could estimate the stability of the embankment more effectively and quantitatively by jointly interpreting the monitoring data of resistivity and SP, water level, pore water pressure, and subsurface displacement. The monitoring experiments in this study led us to the conclusion that for the efficient maintenance of the water utilization facilities, monitoring the resistivity and SP data would be much more preferable to performing the just one-time measurements.

  • PDF

A Study on Determination of the Degree of Consolidation and Time Factor Considering Site Ground Characteristics (현장 지반특성을 고려한 압밀도 및 시간계수 결정에 관한 연구)

  • Choi, Min-Ju;Kim, Hung-Nam;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • This study is conducted to minimize the problems caused by the difference between the settlement and settlement time of the one-dimensional consolidation analysis by the Terzaghi's consolidation theory, which is generally used in domestic soft soil design, from the settlement and settlement time measured at the field site. Consolidation-time factor considering the field site characteristics can be determined using the relationship among the degree of consolidation, settlement time, and time factor, the time-settlement curve measured at the field is reverse- analysis using a numerical-analysis technique to reproduce the same consolidation behavior as in the field. Time-settlement and time-excessive pore water pressure data when the same consolidation behavior as the site is reproduced Consolidation-time factor of the soil of Songsan Green City by settlement and excess pore water pressure was calculated using the settlement and excess pore water pressure for each settlement time. If the results of this study use the Terzaghi consolidation-time factor, which does not consider the consolidation characteristics of the soft ground target area, it is difficult to determine the end time of the soft ground during construction. It is necessary to use the established settlement-time factor.

Numerical Study on the Dissipation of Excessive Pore Pressure in Spatially Varying Soils Using Finite Difference Method (유한차분법을 이용한 위치적 이질성이 과잉간극수압의 소산 현상에 미치는 영향에 대한 연구)

  • Kim, Jung-Yul;Kim, Hyun-Ki;Cho, Nam-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1181-1187
    • /
    • 2009
  • 과잉간극수압의 소산 속도는 일반적으로 압밀방정식에서 정의하는 압밀계수에 의해 결정 되는데, 이 압밀계수는 투수계수와 체적압축계수의 관계로 얻어지는 흙이 특성이며 동일한 성질의 지반에서라도 측정위치에 따라 그 값의 편차가 심한 특성을 보인다. 이에 본 연구에서는 위치적 이질성이 있는 점성토 지반의 압밀과정이 균질한 지반에서의 압밀과 어떤 차이를 보이고, 위치적 이질성으로 인한 불확실성이 압밀소요시간이나 압밀속도에 미치는 영향에 대해 유한차분법을 이용한 수치적인 방법으로 고찰하였다.

  • PDF

A Physical Model Test on Behavior of Shield-tunnel Lining according to Drain Conditions (배수조건에 따른 쉴드터널 라이닝의 거동연구를 위한 모형실험)

  • Choi, Gou-Moon;Yune, Chan-Young;Ma, Sang-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.55-65
    • /
    • 2014
  • Most shield tunnels are designed based on the assumption of a undrained condition. But they are operated as drained tunnels in which underground water flows and passes through a drainage facility. Therefore, it is necessary that the drainage condition be considered in the shield tunnel design. In this research, new testing device which can simulate the underground tunnel located below ground water level, was developed. Total stress and pore water pressure were examined and an inflow water into an inner pipe was measured using the testing device. Test results showed that the total stress, which was the sum of effective stress and pore pressure, increased more in an undrained condition and an inflow water into an inner pipe was proportional to the water pressure but inversely proportional to the loading stress. Consequently, if the drainage is considered in the shield tunnel design, the more economical design can be expected because of the stress reduction of the lining.

A Study on the Application of UBC3D-PLM for Soil Liquefaction Analysis (액상화 해석을 위한 UBC3D-PLM의 적용성에 관한 연구)

  • Park, Eon-Sang;Kim, Byung-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • In this study, a model parameter evaluation method using relative density was proposed to utilize applicable UBC3D-PLM for liquefaction behavior. In addition, dynamic effective stress analysis, that is, liquefaction analysis, was performed on the case of the liquefaction occurrence region where acceleration and pore water pressure were measured, and compared with the actual measurement and the existing Finn analysis results. Through this study, it was found that the proposed method can easily evaluate the necessary parameters required by the related model and predict the pore water pressure behavior in the region where liquefaction occurs. In addition, in the case of the study area, both measurements and numerical analysis showed that liquefaction occurred when a certain amount of time elapsed after the earthquake acceleration reached the maximum value. In the case of UBC3D-PLM applied in this study, the excess pore water pressure behavior similar to the actual measurement was predicted, and the occurrence of liquefaction was evaluated in the same way as the actual measurement. In particular, although the excess pore water pressure in the sand layer was greater, the phenomenon in which liquefaction occurred in the silt layer was accurately realized. It is expected that the proposed model parameter evaluation method and finite element analysis applying UBC3D-PLM can be used to select the liquefaction reinforcement region in the future seismic design and reinforcement by evaluating the liquefaction occurrence region similarly to the real one.

Undrained Behavior of Weathered Granite Soil of Heating-Cooling Repeated Acts Using Temperature Control Triaxial Test (온도변화 삼축압축 실험을 이용한 Heating-Cooling 반복 작용시 화강풍화토의 비배수 거동)

  • Shin, Seung-Min;Sin, Chun-Won;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.3
    • /
    • pp.1-12
    • /
    • 2016
  • In this study, the impact of sand and weathered granite soil is analyzed by changing the internal temperature from $20^{\circ}C{\sim}70^{\circ}C$C by installing a heating coil inside the triaxial cell. To check the effect on weathered granite soil due to increase of temperature and number of heating-coiling cycles are analyzed by measuring the temperature by using thermometer installed inside the triaxial cell and due to that deviator stress also occurred during the consolidated undrained test. To analyze the effect of weathered granite soil with change of temperature during undrained testing. The deviator stress and pore pressure is measured. As a result, pore pressure increases and the deviator stress decreases with rise of temperature.

Application of Electrical Resistivity Monitoring Technique to Maintenance of Embankments (저수지의 유지관리를 위한 전기비저항모니터링 기법 응용)

  • Park Sam Gyu;Kim Jung-Ho;Seo Goo Won
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.177-183
    • /
    • 2005
  • The subject of this paper is research into the application of electrical resistivity monitoring to detecting the water leakage of water utilization facilities. For this purpose, we installed a comprehensive monitoring system consisting of resistivity measurement, inclinometer, piezometer, and water gauge at an embankment. Using this monitoring system, we monitored the various kinds of measurement data and compared the resistivity structures and that of hydrological and engineering data in order to investigate the water leakage and stability of the embankment. The variant images of electrical resistivity at the embankment were provided from the monitoring data and we could accurately locate the portion of which resistivities have sharply changed. Furthermore, we could estimate the stability of the embankment more effectively and quantitatively by jointly interpreting the monitoring data of resistivity, water level, pore water pressure, and subsurface displacement. The monitoring experiments in this study led us to the conclusion that for the efficient maintenance of the water utilization facilities, monitoring the resistivity data and hydrological data would be much more preferable to performing the just one-time measurements.

Uplift Pressure Removal System in Underground Structure by Utilizing Geocomposite System (지오컴포지트를 이용한 양압력 제거공법)

  • Shin, Eun-Chul;Kim, Jong-In;Park, Jeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.61-68
    • /
    • 2006
  • Recently the large scale civil engineering projects are being implemented by reclaiming the sea or utilizing seashore and river embankment areas. The reclaimed land and utilized seashore are mostly soft ground that doesn't have sufficient bearing capacity. This soft ground consists of fine-grained soil such as clayey and silty soils or large void soil like peat or loose sand. It has high ground water table and it may cause the failure and crock of building foundation by uplift pressure and ground water leakage. In this study, the permittivity and the transmissivity were evaluated with the applied normal pressure in the laboratory. The laboratory model tests were conducted by utilizing geocomposite drainage system for draining the water out to release the uplift pressure. The soil used in the laboratory drainage test was dredged soil from the reclaimed land where uplift pressure problems can arise in soil condition. Geocomposite drainage system was installed at the bottom of apparatus and dredged soil was layered with compaction. Subsequently the water pressure was supplied from the top of specimen and the quantities of drainage and the pore water pressure were measured at each step water pressure. The results of laboratory measurements were compared with theoretical values. For the evaluation of propriety of laboratory drainage test, 2-D finite elements analysis that can analyze the distribution and the transferring of pore water pressure was conducted and compared with laboratory test results.