• Title/Summary/Keyword: 각도 보정

Search Result 1,555, Processing Time 0.025 seconds

A Study on magnetic sensor calibration for indoor smartphone position tracking (스마트폰 실내 위치 추적을 위한 지자기 센서 보정에 관한 연구)

  • Lee, Dongwook;Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.229-235
    • /
    • 2018
  • Research on indoor location tracking technology using smart phone is actively being carried out. Especially, in order to display the movement path of the smartphone on the map, the azimuth angle should be estimated by using the geomagnetic sensor built in most smart phones. Due to the distortion of the magnetic field due to the surrounding steel structure and the inclination of the smartphone, the estimation error of azimuthal angle may be occurred. In this paper, we propose a correction method of the geomagnetic sensor at the stationary state and a correction method for the inclination of the smartphone. We also propose a method to correct the azimuth error due to the difference between the magnetic north and the grid north.

Auto fitting Parameter Extraction for Digital Hearing Aids (디지털 보청기의 자동 보정 파라미터 추출)

  • 석수영;정호열;정현열
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.5
    • /
    • pp.495-505
    • /
    • 2000
  • In this paper, we propose an efficient auto-fitting system for digital hearing-aids which automatically adjusts the fitting parameters according to the auditory characteristics of hearing handicapped person. The fitting parameters are extracted from audiogram of hearing handicapped and are applied to digital hearing-aid purposed GM3036 chip. The characteristics of each parameter are compared with those from theoretical 2cc graph. The purposed system has applied to 50 patients and their satisfaction ratios show to the very high. As results, it shows effectiveness of proposed system.

  • PDF

Average Correction for Differential Column Shortening (평균을 이용한 고층건물의 부등 축소량 보정기법)

  • Park, Sung-Woo;Choi, Se-Woon;Park, Hyo-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.588-591
    • /
    • 2010
  • 건물의 수직부재는 시공 후 시간이 지남에 따라 수축하게 된다. 이러한 현상을 기둥축소 현상이라고 부르며 원인으로는 탄성, 비탄성, 환경적 요인 등 여러 가지가 있다. 각 수직 부재에 걸리는 하중의 종류와 크기, 그리고 처한 환경 등이 다르므로 부재별로 축소량에 차이가 있게 된다. 이로 인하여 건물은 여러 가지 피해를 입게 된다. 이에 따라 수직부재인 기둥과 전단벽의 축소량을 예측하는 연구가 활발히 진행되고 있다. 그러나 예측된 축소량을 보정하는 기법에 관한 연구는 그리 많지 않다. 따라서 본 논문에서는 선행 연구되었던 기존의 부등 축소량 보정 기법의 한계에 대하여 지적하고 새로운 보정기법인 평균을 이용한 부등축소량 보정기법을 제시하였다. 본 논문에서 제시한 보정기법의 효용성을 입증하기 위하여 같은 예제에 대하여 기존의 방법과 본 논문에서 제시한 방법을 이용한 결과들을 비교, 정리하였다.

  • PDF

Radiometric Slope Correction for Improvement of Classification Accuracy in Radarsat SAR Imagery (분류정확도 향상을 위한 RADARSAT SAR 영상의 방사왜곡보정)

  • 손홍규;송영선;유환희;정원조
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2002.10a
    • /
    • pp.195-199
    • /
    • 2002
  • SAR(Synthetic Aperture Radar) 영상은 경사촬영을 수행하므로 지형의 기복에 따른 영향을 많이 받는다. 따라서 SAR영상을 이용하여 여러 가지 정보들을 추출하여 이용하기 위해서는 전처리 과정으로서 지형의 기복에 따른 여러 가지 왜곡들을 보정해야 한다. 이에 본 연구에서는 RADARSAT SAR 영상을 이용하여 궤도모델링, 정사보정을 수행하고 역산란계수, 국부입사각 계산 등을 통해 지형기복에 따른 방사왜곡보정을 수행하였다.

  • PDF

Implementation of Multiview Calibration System for An Effective 3D Display (효과적인 3차원 디스플레이를 위한 다시점 영상왜곡 보정처리 시스템 구현)

  • Bae Kyung-Hoon;Park Jae-Sung;Yi Dong-Sik;Kim Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1C
    • /
    • pp.36-45
    • /
    • 2006
  • In this paper, multiview calibration system for an effective 3D display is proposed. This system can be obtain 4-view image from multiview camera system. Also it can be rectify lens and camera distortion, error of bright and color, and it can be calibrate distortion of geometry. In this paper, we proposed the signal processing skill to calibrate the camera distortions which are able to take place from the acquisited multiview images. The discordance of the brightness and the colors are calibrated the color transform by extracting the feature point, correspondence point. And the difference of brightness is calibrated by using the differential map of brightness from each camera image. A spherical lens distortion is corrected by extracting the pattern of the multiview camera images. Finally the camera error and size among the multiview cameras is calibrated by removing the distortion. Accordingly, this proposed rectification & calibration system enable to effective 3D display and acquire natural multiview 3D image.

Correction of Rotated Frames in Video Sequences Using Modified Mojette Transform (변형된 모젯 변환을 이용한 동영상에서의 회전 프레임 보정)

  • Kim, Ji-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.1
    • /
    • pp.42-49
    • /
    • 2013
  • The camera motion is accompanied with the translation and/or the rotation of objects in frames of a video sequence. An unnecessary rotation of objects declines the quality of the moving pictures and in addition is a primary cause of the viewers' fatigue. In this paper, a novel method for correcting rotated frames in video sequences is presented, where the modified Mojette transform is applied to the motion-compensated area in each frame. The Mojette transform is one of discrete Radon transforms, and is modified for correcting the rotated frames as follows. First, the bin values in the Mojette transform are determined by using pixels on the projection line and the interpolation of pixels adjacent to the line. Second, the bin values are calculated only at some area determined by the motion estimation between current and reference frames. Finally, only one bin at each projection is computed for reducing the amount of the calculation in the Mojette transform. Through the simulation carried out on various test video sequences, it is shown that the proposed scheme has good performance for correcting the rotation of frames in moving pictures.

Analysis of the Optimal Degree and Order of Spherical Harmonics for the GNSS Receiver Antenna's PCV Correction (GNSS 수신기 안테나의 PCV 보정 모델 산출을 위한 구면조화함수 최적차수 분석)

  • Kim, Jin Yi;Won, Ji Hye;Park, Kwan Dong;Seo, Seung Woo;Park, Heung Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.113-119
    • /
    • 2014
  • The positioning accuracy of GNSS surveys deteriorates due to various error factor, and many users sometimes ignore Phase Center Variation (PCV) of antennas. IGS provides an ANTEX file which contains PCV correction information to correct for PCVs. But it is not directly applicable because PCV correction information is provided at 5-degree intervals in the azimuth and elevation directions for the case of receiver antennas, and at 1-degree intervals in the nadir angle for the case of satellite antennas. So, we devised new and optimal ways of interpolating PCV in any desired line of sight to the GNSS satellite. We used spherical harmonics fitting methods in terms of the azimuth and elevation angle for interpolation, and found an optimal degree and order. It is shown that the best accuracy was obtained from the 8 by 8 spherical harmonics. If one requires lower burden on computing resources, the order and degree less than 8 could produce resonable accuracy except for 1st and 5th order.

Systematic Error Correction in Dual-Rotating Quarter-Wave Plate Ellipsometry using Overestimated Optimization Method (최적화 기법을 이용한 두 개의 회전하는 사분파장판으로 구성된 타원편광분석기에서의 체계적인 오차 보정)

  • Kim, Dukhyeon;Cheong, Hai Du;Kim, Bongjin
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.1
    • /
    • pp.29-37
    • /
    • 2014
  • We have studied and demonstrated general, systematic error-correction methods for a dual rotating quarter-wave plate ellipsometer. To estimate and correct 5 systematic error sources (three offset angles and two unexpected retarder phase delays), we used 11 of the 25 Fourier components of the ellipsometry signal obtained in the absence of an optical sample. Using these 11 Fourier components, we can determine the errors from the 5 sources with nonlinear optimization methods. We found systematic errors ${\epsilon}_3$, ${\epsilon}_4$, ${\epsilon}_5$) are more sensitive to the inverted Mueller matrix than retarder phase delay errors (${\epsilon}_1$, ${\epsilon}_2$) because of their small condition numbers. To correct these systematic errors we have found that error of any variety must be less than 0.05 rad. Finally, we can use the magnitudes of these errors to correct the Mueller matrix of optical components. From our experimental ellipsometry signals, we can measure phase delay and the rotational angular position of its fast axis for a half-wave plate.

A study on the skeletal changes after treatment of Class III malocclusion patients (3급 부정교합 환자에서의 치료후 골격변화 양상에 관한 연구)

  • Chung, Dong-Hwa;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.26 no.3
    • /
    • pp.267-279
    • /
    • 1996
  • This study was investigated the changes during treatment and retention period in the Class III malocclusion patients and explored the correlationship between factors that showed relapse tendencies and pre-treatment skeletal pattern and the changes during treatment period. Numbers of total sample were 24 and their Hellman's dental age at the start of treatment was over III B and were retained at least over 1 year 6 months. The following conclusion were obtained by comparing the differences between treatment period and retention period, and after analysing the correlationship of factors that manifested relapse tendencies. 1. The angles formed by FH plane and occlusal plane, FH plane and mandibular plane, and mandibular incisor and mandibular plane changes showed rebound effect during retention period and among them occlusal plane angle and IMPA show reverse correlationship. 2. Upward displacement of the occlusal plane at the end of treatment has returning tendency, is proportional to the displacement during treatment period, but the angle between maxillary and mandibular 1st molar to its basal bone have been constantlsy maintained during the retention period. 3. Mandibular plane decrease during retention period and downward backward rotation during treatment period show correlationship.

  • PDF

The comparative analysis of KOMPSAT-3 based surface normalized difference vegetation index: Application of GeoEye data (다목적실용위성 3호의 지표 정규식생지수 산출 및 비교 분석: GeoEye 자료 활용)

  • Yeom, Jong-Min
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.80-86
    • /
    • 2014
  • In this study, we the estimated surface normalized difference vegetation index by using the KOrea Multi-Purpose SATellite-3 (KOMPSAT-3) multi-spectral images for comparative analysis. The estimated NDVI from KOMPSAT-3 is used as for comparison with the high resolution GeoEye products. The geometry conditions for atmospheric effects are selected from meta files of KOMPSAT-3 bundle data. The used geometry conditions are consist of solar zenith angle, solar azimuth angle, viewing zenith angle, viewing azimuth angle, and date. And, Atmospheric effects such as attenuation, scattering and absorption were physically simulated from water vapor, ozone and aerosol information. Generally, although ground measurements are important for accurate information, in this study, MODIS atmospheric products are used as atmospheric constituents. The surface reflectance from radiative transfer model is utilized for estimating vegetation index. The present study, to reduce atmospheric and geometry conditions between KOMPSAT-3 and GeoEye having difference observation characteristics, data acquisition time is carefully determined for reliable vegetation spectral characteristics.