• Title/Summary/Keyword: 가황촉진제

Search Result 44, Processing Time 0.022 seconds

Cure Characteristics and Mechanical Properties of Ternary Accelerator System in NR/BR Compounds (NR/BR Compounds의 가황촉진제 병용에 의한 가황 특성 및 기계적 물성 연구)

  • Kim, Il-Jin;Kim, Wook-Soo;Lee, Dong-Hyun;Bae, Jong-Woo;Byon, Young-Hoo;Kim, Wonho
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.403-409
    • /
    • 2009
  • In the 1840s, Goodyear found out sulfur cure system, but cure time was too slow. So producing of rubber product takes a long time. In 1904, Oenslager et al. found that aniline is accelerated sulfur cure system. Recently, many rubber industries needed high yield and good quality. So, many researchers have studied a rubber system with fast vulcanization time and good mechanical properties. In this study, cure characteristics and mechanical properties of NR/BR compounds by accelerator with MBTS(2,2' Dithiobisbenzothiazole), TMTM(Tetramethylthiuram Monosulfide), ZDMC (Zinc dimethyldithiocarbamate), CBS(N-Cyclohexyl benzothiazolyl-2-sulfenamide), DPG(Diphenylguanidine) were evaluated. The results of the study indicate that cure charateristics($t_{90}$: 235 sec, $T_{max}$: 5.77 Nm) and mechanical properties (100, 300% modulus : 2,180, 5.656 Mpa and tear strength: 59.58 kgf/cm) of NR/BR compounds shows efficient acceleration with MBTS 1.5 phr, TMTM 0.5 phr, DPG 0.15phr. This is due to the synergistic activity of ternary accelerator system in rubber vulcanization.

Effects of Accelerators on the Vulcanization Properties of Silica vs. Carbon Black Filled Natural Rubber Compounds (촉진제가 실리카와 카본블랙으로 충전된 천연고무 복합소재의 가황 특성에 미치는 영향)

  • Kim, Sung-Min;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.269-275
    • /
    • 2013
  • Thiuram (DPTT, TMTD), thiazole (MBT, MBTS), sulfenamide (CBS, NOBS), and zinc containing thiuram (dithiocarbamate) (ZDBC) type accelerators were added into silica and carbon black filled natural rubber (NR) compounds. Their effects on vulcanization time and rate were compared. The vulcanization rate of thiuram type accelerator added compounds showed the fastest rate, followed by thiazole and sulfenamide types. Silica filled natural rubber (NR) compounds showed a slower vulcanization time ($t_{s2}$, $t_{10}$, $t_{90}$) and lower cure rate index (CRI) than carbon black filled ones upon each accelerator.

A Study on the Low Temperature Retraction of NR (가황천연고무의 저온 회복력에 관한 연구)

  • Yun, Jun-Ho;Kim, Tae-Ho
    • Elastomers and Composites
    • /
    • v.35 no.4
    • /
    • pp.303-310
    • /
    • 2000
  • Low temperature retraction characteristics were investigated on the cured natural rubber with various ratios of crosslinking agents, filler and additives. The cured natural rubber product was elongated about 200% at $-40^{\circ}C$ for 24 hours and then retracted. In a definite range, the retraction was increased as the sulfur to accelerator ratio increased and as the filler contents decreased. The retraction was maximum for a definite range of amount of accelerators, plasticizer and activator. Adding some peroxide additively retraction characteristics improved and curing time got longer.

  • PDF

The Effects of Cure System on Vulcanization Reaction Constant and Physical Properties of Rubber Compounds (가황시스템 변화가 배합고무의 가황반응속도 및 물리적 특성에 미치는 영향)

  • Lee, Seag;Park, Nam Cook
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.419-426
    • /
    • 1999
  • In this study, the reaction rate constant, activation energy, total crosslinking density, elastic constant, cure properties ($t_5,\;t_{90}$), modulus, and abrasion resistance of rubber compounds were investigated as a function of cure temperatures, cure systems and reinforcing filler loadings. Reaction rate constants showed strong dependence on thc carbon black loading, cure temperature and cure system, and increased sharply with increasing the reaction temperatures. The lowest activation energy was obtained in the efficient cure (EC) system which corresponds to the high level of sulfur to accelerator ratio, and the activation energy was decreased with decreasing the carbon black loadings. The change of carbon black loadings directly affects the modulus and abrasion resistance, but the change of cure system showed various effects on the rubber compounds. Increased carbon black loadings showed the high modulus, improved abrasion resistance and short scorch time but decrease in crosslinking density and elastic constant. Higher crosslinking density and elastic constant were shown in the EC cure system regardless of carbon black loadings, but scorch timc ($t_5$) was not affected by the change of the ratio of sulfur to accelerator. Rapid optimum cure time ($t_{90}$) were showen in the EC cure system. Also, the equivalent cure curve coefficient of rubber compound was 0.96 for conventional cure (CC) system, and 0.94 for semi-efficient cure (SEC) and EC system regardless carbon black loadings. As regarding the abrasion resistance, wear volume showed the logarithmic increase for the loaded weight.

  • PDF

SOME OBSERVATIONS ON THE MECHANISM OF CURE RETARDATION

  • Son, P.N.
    • Elastomers and Composites
    • /
    • v.13 no.4
    • /
    • pp.277-281
    • /
    • 1978
  • 1. A good retarder reacts fast with MBT and. forms a non-scorchy accelerator. 2. The decrease in cure rate$(k_1)$ is attributable to the slow cure rate of 2-cyclohexyldithiobenzothiazole(CDB). 3. Cyclohexyl polysulfides(CPS) and cyclohexylthioamine are believed to be also involved in the cure retardation. 4. The new retarder can stop crosslinking by intercepting the crosslink precursors. 5. Formation of cyclohexyl polysulfides and their lack of curing property may be responsible for the low state of cure when the new retarde is used. These results are schematically summarized in Figure 7.

  • PDF

SBR 백색(白色) 배합(配合)고무의 변색시험(變色試驗)

  • Lee, Hong-Seop
    • Elastomers and Composites
    • /
    • v.13 no.2
    • /
    • pp.126-132
    • /
    • 1978
  • SBR 백색(白色) 배합(配合)고무의 일광변색(日光變色)은 노방제(老防劑)나 연화제(軟化劑)의 종류(種類)와 양(量)에 의(依)한 영향보다는 가황제(加黃劑)나 촉진제(促進劑)의 종류(種類)에 큰 영향을 받으며, 특(特)히 가황(加黃)의 정도(程度)는 변색(變色)에 가장 큰 영향을 미친다.

  • PDF