• 제목/요약/키워드: 가진 시스템

검색결과 3,443건 처리시간 0.026초

토픽모델링을 활용한 COVID-19 학술 연구 기반 연구 주제 분류에 관한 연구 (A study on the classification of research topics based on COVID-19 academic research using Topic modeling)

  • 유소연;임규건
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.155-174
    • /
    • 2022
  • 2020년 1월부터 2021년 10월 현재까지 COVID-19(치명적인 호흡기 증후군인 코로나바이러스-2)와 관련된 학술 연구가 500,000편 이상 발표되었다. COVID-19와 관련된 논문의 수가 급격하게 증가함에 따라 의료 전문가와 정책 담당자들이 중요한 연구를 신속하게 찾는 것에 시간적·기술적 제약이 따르고 있다. 따라서 본 연구에서는 LDA와 Word2vec 알고리즘을 사용하여 방대한 문헌의 텍스트 자료로부터 유용한 정보를 추출하는 방안을 제시한다. COVID-19와 관련된 논문에서 검색하고자 하는 키워드와 관련된 논문을 추출하고, 이를 대상으로 세부 주제를 파악하였다. 자료는 Kaggle에 있는 CORD-19 데이터 세트를 활용하였는데, COVID-19 전염병에 대응하기 위해 주요 연구 그룹과 백악관이 준비한 무료 학술 자료로서 매주 자료가 업데이트되고 있다. 연구 방법은 크게 두 가지로 나뉜다. 먼저, 47,110편의 학술 논문의 초록을 대상으로 LDA 토픽 모델링과 Word2vec 연관어 분석을 수행한 후, 도출된 토픽 중 'vaccine'과 관련된 논문 4,555편, 'treatment'와 관련된 논문 5,791편을 추출한다. 두 번째로 추출된 논문을 대상으로 LDA, PCA 차원 축소 후 t-SNE 기법을 사용하여 비슷한 주제를 가진 논문을 군집화하고 산점도로 시각화하였다. 전체 논문을 대상으로 찾을 수 없었던 숨겨진 주제를 키워드에 따라 문헌을 분류하여 토픽 모델링을 수행한 결과 세부 주제를 찾을 수 있었다. 본 연구의 목표는 대량의 문헌에서 키워드를 입력하여 특정 정보에 대한 문헌을 분류할 수 있는 방안을 제시하는 것이다. 본 연구의 목표는 의료 전문가와 정책 담당자들의 소중한 시간과 노력을 줄이고, 신속하게 정보를 얻을 수 있는 방법을 제안하는 것이다. 학술 논문의 초록에서 COVID-19와 관련된 토픽을 발견하고, COVID-19에 대한 새로운 연구 방향을 탐구하도록 도움을 주는 기초자료로 활용될 것으로 기대한다.

네덜란드의 혁신클러스터정책과 시사점 (The Innovation Ecosystem and Implications of the Netherlands.)

  • 김영우
    • 벤처혁신연구
    • /
    • 제5권1호
    • /
    • pp.107-127
    • /
    • 2022
  • 본 연구는 네덜란드의 지역별 혁신 클러스터정책을 통해 네덜란드 경제의 성장동인을 찾고자 한다. 전통적으로 농업과 물류중심의 경제구조를 가진 네덜란드는 1990년대 지역 클러스터를 만들면서 첨단 허브 국가로서 역할을 충실하게 해왔고 작은 나라임에도 세계 수출의 7위를 차지하는 등 혁신국가의 이미지를 만드는데 성공했다. 그 바탕에는 혁신을 위한 체계적인 분석 접근법으로 '지역 혁신 시스템(Rational Innovation System)'의 개념을 도입하고 지역의 특색을 살린 산학연 모델이 가장 큰 요인으로 작용했다. 여기에는 적절한 중앙정부의 혁신 생태계 조성을 위한 정책적 방향 제시와 지역을 중심으로 한 산학연 모델이 크게 작용한 것으로 평가받고 있다. 이런 점을 종합적으로 살펴 볼 때 본고에서는 다음과 같은 시사점을 발견할 수 있다. 첫째, 혁신 클러스터의 활성화이다. 둘째, Top 9을 중심으로 한 신산업육성정책과 미래산업 전략을 활성화하고 있다. 셋째, 산학연 협력을 구체화하고 있다. 넷째, 스타트업의 창업을 육성하고 있다. 이를 종합하면 네덜란드는 2019년 설립된 TechLeap은 네덜란드의 기술 생태계를 정량화하고 가속화하는 데 도움을 주는데 자본, 시장 및 인재에 대한 접근성을 개선하기 위한 프로그램 및 이니셔티브를 통해 기술 기업이 확장할 수 있는 최적의 환경을 조성해 네덜란드를 미래의 기술 선도기업들을 위한 보금자리로 만들기 위해 노력하고 있다. 첨단농업과 물류국가로 알려진 네덜란드는 4차 산업혁명시대를 맞이하여 로테르담을 중심으로 하는 물류의 항구에서 ICT 기술을 기반으로 하는 '지식항구(brainport)'로 확장하고 있다. 네덜란드는 물류 국가에서 산업화에 성공했지만 최근 지역혁신 생태계를 만들기 위한 중앙정부의 비전 제시와 지역의 특화산업을 연계한 산학연 클러스터 모델이 가장 큰 디딤돌 역할을 하고 있음을 확인할 수 있다. 네덜란드의 혁신정책은 혁신 클러스터 생태계를 중심으로 지역을 개발하고 일자리 창출과 새로운 산업을 위한 투자를 통해 유럽의 '디지털 관문'으로서 역할에 보다 충실할 것으로 전망된다.

전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법 (Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification)

  • 바트후 ?바자브;주마벡 알리하노브;팡양;고승현;조근식
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet)은 시각적 특징의 계층 구조를 분석하고 학습할 수 있는 대표적인 심층 신경망이다. 첫 번째 신경망 모델인 Neocognitron은 80 년대에 처음 소개되었다. 당시 신경망은 대규모 데이터 집합과 계산 능력이 부족하여 학계와 산업계에서 널리 사용되지 않았다. 그러나 2012년 Krizhevsky는 ImageNet ILSVRC (Large Scale Visual Recognition Challenge) 에서 심층 신경망을 사용하여 시각적 인식 문제를 획기적으로 해결하였고 그로 인해 신경망에 대한 사람들의 관심을 다시 불러 일으켰다. 이미지넷 첼린지에서 제공하는 다양한 이미지 데이터와 병렬 컴퓨팅 하드웨어 (GPU)의 발전이 Krizhevsky의 승리의 주요 요인이었다. 그러므로 최근의 딥 컨볼루션 신경망의 성공을 병렬계산을 위한 GPU의 출현과 더불어 ImageNet과 같은 대규모 이미지 데이터의 가용성으로 정의 할 수 있다. 그러나 이러한 요소는 많은 도메인에서 병목 현상이 될 수 있다. 대부분의 도메인에서 ConvNet을 교육하기 위해 대규모 데이터를 수집하려면 많은 노력이 필요하다. 대규모 데이터를 보유하고 있어도 처음부터 ConvNet을 교육하려면 많은 자원과 시간이 소요된다. 이와 같은 문제점은 전이 학습을 사용하면 해결할 수 있다. 전이 학습은 지식을 원본 도메인에서 새 도메인으로 전이하는 방법이다. 전이학습에는 주요한 두 가지 케이스가 있다. 첫 번째는 고정된 특징점 추출기로서의 ConvNet이고, 두번째는 새 데이터에서 ConvNet을 fine-tuning 하는 것이다. 첫 번째 경우, 사전 훈련 된 ConvNet (예: ImageNet)을 사용하여 ConvNet을 통해 이미지의 피드포워드 활성화를 계산하고 특정 레이어에서 활성화 특징점을 추출한다. 두 번째 경우에는 새 데이터에서 ConvNet 분류기를 교체하고 재교육을 한 후에 사전 훈련된 네트워크의 가중치를 백프로퍼게이션으로 fine-tuning 한다. 이 논문에서는 고정된 특징점 추출기를 여러 개의 ConvNet 레이어를 사용하는 것에 중점을 두었다. 그러나 여러 ConvNet 레이어에서 직접 추출된 차원적 복잡성을 가진 특징점을 적용하는 것은 여전히 어려운 문제이다. 우리는 여러 ConvNet 레이어에서 추출한 특징점이 이미지의 다른 특성을 처리한다는 것을 발견했다. 즉, 여러 ConvNet 레이어의 최적의 조합을 찾으면 더 나은 특징점을 얻을 수 있다. 위의 발견을 토대로 이 논문에서는 단일 ConvNet 계층의 특징점 대신에 전이 학습을 위해 여러 ConvNet 계층의 특징점을 사용하도록 제안한다. 본 논문에서 제안하는 방법은 크게 세단계로 이루어져 있다. 먼저 이미지 데이터셋의 이미지를 ConvNet의 입력으로 넣으면 해당 이미지가 사전 훈련된 AlexNet으로 피드포워드 되고 3개의 fully-connected 레이어의 활성화 틀징점이 추출된다. 둘째, 3개의 ConvNet 레이어의 활성화 특징점을 연결하여 여러 개의 ConvNet 레이어의 특징점을 얻는다. 레이어의 활성화 특징점을 연결을 하는 이유는 더 많은 이미지 정보를 얻기 위해서이다. 동일한 이미지를 사용한 3개의 fully-connected 레이어의 특징점이 연결되면 결과 이미지의 특징점의 차원은 4096 + 4096 + 1000이 된다. 그러나 여러 ConvNet 레이어에서 추출 된 특징점은 동일한 ConvNet에서 추출되므로 특징점이 중복되거나 노이즈를 갖는다. 따라서 세 번째 단계로 PCA (Principal Component Analysis)를 사용하여 교육 단계 전에 주요 특징점을 선택한다. 뚜렷한 특징이 얻어지면, 분류기는 이미지를 보다 정확하게 분류 할 수 있고, 전이 학습의 성능을 향상시킬 수 있다. 제안된 방법을 평가하기 위해 특징점 선택 및 차원축소를 위해 PCA를 사용하여 여러 ConvNet 레이어의 특징점과 단일 ConvNet 레이어의 특징점을 비교하고 3개의 표준 데이터 (Caltech-256, VOC07 및 SUN397)로 실험을 수행했다. 실험결과 제안된 방법은 Caltech-256 데이터의 FC7 레이어로 73.9 %의 정확도를 얻었을 때와 비교하여 75.6 %의 정확도를 보였고 VOC07 데이터의 FC8 레이어로 얻은 69.2 %의 정확도와 비교하여 73.1 %의 정확도를 보였으며 SUN397 데이터의 FC7 레이어로 48.7%의 정확도를 얻었을 때와 비교하여 52.2%의 정확도를 보였다. 본 논문에 제안된 방법은 Caltech-256, VOC07 및 SUN397 데이터에서 각각 기존에 제안된 방법과 비교하여 2.8 %, 2.1 % 및 3.1 %의 성능 향상을 보였다.