사용자들의 추천 서비스를 위해 다른 사용자들의 평가값을 이용하여 특정 사용자에게 서비스를 추천해 주는 추천 시스템은 협력적 필터링 방법을 널리 사용되고 있다. 하지만 이러한 추천시스템은 클러스터링 과정에서 이미 분류된 그룹에 특정 사용자가 분류되어 정확히 분류되지 못하고, 사용자들의 평가값 오차가 클 경우 정확하지 못한 결과를 추천할 수 있다. 본 논문에서는 예측 정확도를 높이기 위하여 특정 사용자의 분류 항목을 기준으로 재분류하고, 시간적으로 임계치를 넘어 선 사용자의 평가값을 찾아내어 보정한 후 협력적 필터링에 적용한 추천 시스템을 제안하였다. 본 시스템에서는 클러스터링 과정에서 이미 분류된 그룹에 특정 사용자를 분류하는 것이 아니라, 특정 사용자를 기준으로 그룹을 재편성하는 방법을 사용하였다. 또한 평가 정보를 표본 절사평균에서 하위 10%를 절사하여 평가 정보들을 보정하고, 나머지 자료들은 시간에 따른 가중치를 적용하였다. 실험 결과 제안한 방법은 일반적인 협력적 필터링보다 MAE를 사용할 경우 예측 정확도가 14.9% 정도 우수함을 보였다.
본 논문은 weighted FCM(Fuzzy C-Means) 알고리즘을 적용한 컬러 영상 multi-level thresholding을 제안한다. FCM 알고리즘은 기존의 thresholding 방법들과 달리 최적의 임계치를 결정할 수 있으며 multi-level thresholding으로의 확장이 가능하다. 그러나 공간정보를 포함하고 있지 않기 때문에 잡음 등에 민감하다는 단점을 가진다. 본 논문은 이러한 단점을 해결하기 위해서 이웃 화소들로부터 얻은 entropy 기반의 가중치(weight)를 FCM 알고리즘에 적용함으로써 잡음의 제거가 가능하다. 그리고 각 색상별 성분의 군집 화소들을 기반으로 생성한 코드 영상에 대해서 군집 내부의 거리값을 이용하여 최적의 군집수를 결정한다. 실험에서 제안한 방법이 기존의 방법들보다 잡음에 대해서 강건하며 우수한 분할 성능을 보였다.
본 논문은 사용자의 입력, 색상 및 깊이 정보를 이용한 의미론적 물체 분할 방법을 제안한다. 의미있는 영역을 깊이영상에서 유사한 깊이 정보와 사용자 스트로크 입력의 중심에 위치한다고 가정한다. 제안된 방법은 스트로크 입력을 이용하여 관심 영역을 설정하고, 색상과 깊이 정보를 이용하여 의미있는 영역을 검출한다. 구체적으로 제안방법은 관심영역에 대해 색상과 깊이 정보를 이용한 과분할 과정과 과분할 영역에 대해 깊이 정보를 이용한 의미론적 물체 추출과정으로 구성되어 있다. 과분할 과정에서 적응적 임계값 적용 및 형태학적 기울기에 대한 적응적인 가중치 적용을 통한 마커 추출 방법을 제안하였다. 의미론적 물체 추출과정에서는 관심영역의 가장자리 영역에서 내부 영역으로의 순서대로 전체 깊이의 평균과 차이를 이용하여 추출하고자 하는 물체 영역인지 아닌지를 결정하도록 하였다. 실험 결과에서 제안한 방법이 효과적으로 의미있는 물체 추출 결과를 얻을 수 있음을 보인다.
정확한 강수예측을 위해서는 예측인자 선정과 예측방법에 대한 선택이 매우 중요하다. 최근에는 강수예측 방법으로 기계학습 기법이 많이 사용되고 있으며, 그 중에서도 특히 인공신경망을 사용한 강수예측 방법은 좋은 성능을 보였다. 본 논문에서는 딥러닝 기법 중 하나인 DBN(deep belief network)를 이용한 새로운 강수예측 방법을 제안한다. DBN는 비지도 사전 학습을 통해 초기 가중치를 설정하여 기존 인공신경망의 문제점을 보완한다. 예측인자로는 기온, 전일-전주 강수일, 태양과 달 궤도 관련 자료를 선정하였다. 기온과 전일-전주 강수일은 서울에서의 1974년부터 2013년까지 총 40년간의 AWS(automatic weather system) 관측 자료를 사용하였고, 태양과 달의 궤도 관련 자료는 서울을 중심으로 계산한 결과를 사용하였다. 전체 기간에서 일부는 학습 자료로 사용하여 예측모델을 생성하였고, 나머지를 생성한 모델의 검증 자료로 사용하였다. 모델 검증 결과로 나온 예측값들은 확률값을 가지며 임계치를 이용하여 강수유무를 판별하였다. 강수 정확도의 척도로 양분예보기법 중 CSI(critical successive index)와 Bias(frequency bias)를 계산하였다. 이를 통해 DBN와 MLP(multilayer perceptron)의 성능을 비교한 결과 DBN의 강수 예측 정확도가 높았고, 수행속도 또한 2배 이상 빨랐다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.