• 제목/요약/키워드: 가중치 임계값

검색결과 74건 처리시간 0.017초

상대적 분류 방법과 시간에 따른 평가값 보정을 적용한 협력적 필터링 기반 추천 시스템 (A Collaborative Filtering-based Recommendation System with Relative Classification and Estimation Revision based on Time)

  • 이세일;이상용
    • 한국지능시스템학회논문지
    • /
    • 제20권2호
    • /
    • pp.189-194
    • /
    • 2010
  • 사용자들의 추천 서비스를 위해 다른 사용자들의 평가값을 이용하여 특정 사용자에게 서비스를 추천해 주는 추천 시스템은 협력적 필터링 방법을 널리 사용되고 있다. 하지만 이러한 추천시스템은 클러스터링 과정에서 이미 분류된 그룹에 특정 사용자가 분류되어 정확히 분류되지 못하고, 사용자들의 평가값 오차가 클 경우 정확하지 못한 결과를 추천할 수 있다. 본 논문에서는 예측 정확도를 높이기 위하여 특정 사용자의 분류 항목을 기준으로 재분류하고, 시간적으로 임계치를 넘어 선 사용자의 평가값을 찾아내어 보정한 후 협력적 필터링에 적용한 추천 시스템을 제안하였다. 본 시스템에서는 클러스터링 과정에서 이미 분류된 그룹에 특정 사용자를 분류하는 것이 아니라, 특정 사용자를 기준으로 그룹을 재편성하는 방법을 사용하였다. 또한 평가 정보를 표본 절사평균에서 하위 10%를 절사하여 평가 정보들을 보정하고, 나머지 자료들은 시간에 따른 가중치를 적용하였다. 실험 결과 제안한 방법은 일반적인 협력적 필터링보다 MAE를 사용할 경우 예측 정확도가 14.9% 정도 우수함을 보였다.

Entropy 기반의 Weighted FCM 알고리즘을 이용한 컬러 영상 Multi-level thresholding (Multi-level thresholding using Entropy-based Weighted FCM Algorithm in Color Image)

  • 오준택;곽현욱;김욱현
    • 대한전자공학회논문지SP
    • /
    • 제42권6호
    • /
    • pp.73-82
    • /
    • 2005
  • 본 논문은 weighted FCM(Fuzzy C-Means) 알고리즘을 적용한 컬러 영상 multi-level thresholding을 제안한다. FCM 알고리즘은 기존의 thresholding 방법들과 달리 최적의 임계치를 결정할 수 있으며 multi-level thresholding으로의 확장이 가능하다. 그러나 공간정보를 포함하고 있지 않기 때문에 잡음 등에 민감하다는 단점을 가진다. 본 논문은 이러한 단점을 해결하기 위해서 이웃 화소들로부터 얻은 entropy 기반의 가중치(weight)를 FCM 알고리즘에 적용함으로써 잡음의 제거가 가능하다. 그리고 각 색상별 성분의 군집 화소들을 기반으로 생성한 코드 영상에 대해서 군집 내부의 거리값을 이용하여 최적의 군집수를 결정한다. 실험에서 제안한 방법이 기존의 방법들보다 잡음에 대해서 강건하며 우수한 분할 성능을 보였다.

색상과 깊이정보를 융합한 의미론적 영상 분할 방법 (Color-Depth Combined Semantic Image Segmentation Method)

  • 김만중;강현수
    • 한국정보통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.687-696
    • /
    • 2014
  • 본 논문은 사용자의 입력, 색상 및 깊이 정보를 이용한 의미론적 물체 분할 방법을 제안한다. 의미있는 영역을 깊이영상에서 유사한 깊이 정보와 사용자 스트로크 입력의 중심에 위치한다고 가정한다. 제안된 방법은 스트로크 입력을 이용하여 관심 영역을 설정하고, 색상과 깊이 정보를 이용하여 의미있는 영역을 검출한다. 구체적으로 제안방법은 관심영역에 대해 색상과 깊이 정보를 이용한 과분할 과정과 과분할 영역에 대해 깊이 정보를 이용한 의미론적 물체 추출과정으로 구성되어 있다. 과분할 과정에서 적응적 임계값 적용 및 형태학적 기울기에 대한 적응적인 가중치 적용을 통한 마커 추출 방법을 제안하였다. 의미론적 물체 추출과정에서는 관심영역의 가장자리 영역에서 내부 영역으로의 순서대로 전체 깊이의 평균과 차이를 이용하여 추출하고자 하는 물체 영역인지 아닌지를 결정하도록 하였다. 실험 결과에서 제안한 방법이 효과적으로 의미있는 물체 추출 결과를 얻을 수 있음을 보인다.

딥러닝 기법을 이용한 내일강수 예측 (Forecasting the Precipitation of the Next Day Using Deep Learning)

  • 하지훈;이용희;김용혁
    • 한국지능시스템학회논문지
    • /
    • 제26권2호
    • /
    • pp.93-98
    • /
    • 2016
  • 정확한 강수예측을 위해서는 예측인자 선정과 예측방법에 대한 선택이 매우 중요하다. 최근에는 강수예측 방법으로 기계학습 기법이 많이 사용되고 있으며, 그 중에서도 특히 인공신경망을 사용한 강수예측 방법은 좋은 성능을 보였다. 본 논문에서는 딥러닝 기법 중 하나인 DBN(deep belief network)를 이용한 새로운 강수예측 방법을 제안한다. DBN는 비지도 사전 학습을 통해 초기 가중치를 설정하여 기존 인공신경망의 문제점을 보완한다. 예측인자로는 기온, 전일-전주 강수일, 태양과 달 궤도 관련 자료를 선정하였다. 기온과 전일-전주 강수일은 서울에서의 1974년부터 2013년까지 총 40년간의 AWS(automatic weather system) 관측 자료를 사용하였고, 태양과 달의 궤도 관련 자료는 서울을 중심으로 계산한 결과를 사용하였다. 전체 기간에서 일부는 학습 자료로 사용하여 예측모델을 생성하였고, 나머지를 생성한 모델의 검증 자료로 사용하였다. 모델 검증 결과로 나온 예측값들은 확률값을 가지며 임계치를 이용하여 강수유무를 판별하였다. 강수 정확도의 척도로 양분예보기법 중 CSI(critical successive index)와 Bias(frequency bias)를 계산하였다. 이를 통해 DBN와 MLP(multilayer perceptron)의 성능을 비교한 결과 DBN의 강수 예측 정확도가 높았고, 수행속도 또한 2배 이상 빨랐다.