• 제목/요약/키워드: 가중치 알고리즘

검색결과 1,233건 처리시간 0.026초

용어가중치 결합이 검색 효율성에 미치는 영향 연구 (The Impact of Combining Term Wights on Retrieval Effectiveness)

  • 최성환;정영미
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.481-483
    • /
    • 2002
  • 본 논문에서는 데이터 결합 영역에서 문서값을 정규화 하는 기법과 결합함수에 따라 용어가중치 결합이 검색성능에 어떤 영향을 미치는가를 분석하였으며, 특히 용어가중치 결합이 실질적으로 효율적인가를 성능 향상률 측면과 검색시스템의 효율성 측면에서 검증하고, 성능이 향상된 용어가중치 결합의 특징을 분석하였다. 실헙결과 대부분의 장어가중치 결합은 문서값 정규화 기법과 실험집단에 관계없이 높은 성능 향상률을 보이지 않았다. 특히 단일가중치고 높은 검색성능을 보였던 상위 가중치 알고리즘들은 다른 가중치 알고리즘과 결합할 경우 두드러진 성능 향상률을 보이지 않았다. 검색시스템의 효율성 측면에서 용어가중치 결합을 평가한 결과 문헌 내 단어빈도를 최대단어 빈도로 정규화한 가중치 알고리즘이 코사인 정규화 기법을 적용한 가중치 알고리즘들과 결합될 때 5개 실험집안에서 최적 단일가중치 보다 2% 이상 높은 성능을 보였다. 이는 서로 다른 특성을 지니는 용어가중치 알고리즘들이 장단점을 보완하여 검색성능을 향상시킨 수 있다는 것을 의미한다. 그러나 용어가중치 결합의 효율성은 컬렉션과 가중치 알고리즘의 특성에 의존적이었으며, 비록 각 용어가중치 결합의 성능이 높게 나타날지라도 최적의 성능을 보인 달일가중치와 비교하면 그 성능 차이가 미미하거나 낮아서 대부분의 용어가중치 결합이 실질적으로 효과적이지 못하였다.

  • PDF

EBP 신경망 학습에서의 동적 초기 가중치 선택에 관한 연구 (A Study on Analysis of Dynamic Generation of Initial Weights in EBP Learning)

  • 김태훈;이일병
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 추계학술발표대회
    • /
    • pp.35-38
    • /
    • 2006
  • 다층 퍼셉트론(MLP) 학습 이론인 오류 역전파 알고리즘은 델타룰과 최급 하강법을 사용하기 때문에 학습시 많은 시간이 소요된다는 단점을 가지고 있다. 때문에 신경망에서의 잘못된 초기 가중치 선택은 오류 역전파 알고리즘을 사용하는 신경망에서의 현격한 학습 성능저하를 발생시키게 된다. 본 논문에서는 학습시 오류 역전파 알고리즘의 수렴시간을 개선하기 위한 신경망의 동적 초기 가중치 선택 알고리즘을 제안한다. 이 알고리즘은 학습전 기존의 선택 가중치와 모든 가중치가 1.0 또는 -1.0 값을 가지는 가중치 집합에서 가중치 변동률을 선측정하여 이들 중 가장 변동률이 큰 경우를 초기 가중치 집합으로 선정하게 된다. 즉, 초기의 가중치 변동률을 차후 성능을 판단하는 지표로 사용하여 잘못된 가중치 선택으로 인한 최악의 학습효율의 가능성을 배제시키고 다층 신경망의 학습특성상 평균 이상의 학습효율을 보장하는 초기 가중치 선택방법이다.

  • PDF

개인화된 정보 필터링 에이전트를 위한 유전 알고리즘 (Genetic algorithm for personalized information filtering agent)

  • 손윤희;박상호
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 추계학술발표논문집
    • /
    • pp.423-428
    • /
    • 2001
  • 유전 알고리즘을 이용한 정보 필터링 에이전트는 기존의 검색엔진에서 찾고자 하는 문서에 대해 검색된 문서의 유사도가 낮은 문제점을 해결한다. 본 논문에서는 HTML 태그의 중요도 가중치와 HTML 태그 안의 위치에 대한 가중치를 유전 알고리즘을 이용하여 학습한다. 여기서 학습된 가중치가 높은 태그와 태그 안의 위치 그리고 출현하는 빈도수에 대한 중요도 가중치를 다시 유전 알고리즘을 이용하여 학습하고 여기서 학습된 가중치로 검색된 문서를 필터링하여 정보 검색 성능을 향상시킬 수 있는 방법을 제안한다. 이 때 태그의 중요도 가중치 값을 학습하는 방법으로 하나의 태그를 유전자로 매핑하고 일련의 태그 집합을 염색체로 표현한 유전 알고리즘을 이용한다. 태그 안의 위치에 대한 중요도 가중치 값도 같은 방법을 이용한다. 여기서 나온 태그와 위치 그리고 빈도 수에 대한 중요도 가중치 값을 다시 유전자 알고리즘 이용하여 계산하다. 이 값으로 검색된 문서를 필터링하여 기존의 정보검색보다 검색자가 원하는 검색문서에 상당한 정확율을 제공하는 방법을 제안한다.

  • PDF

LMSBP 알고리즘을 이용한 탭 가중치 갱신을 통한 수렴 특성에 관한 연구 (A Study on the Convergence Characteristics Through Tap Weight Updating with LMSBP Algorithm)

  • 배용근
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (3)
    • /
    • pp.280-282
    • /
    • 1999
  • 적응 횡단선 심볼간의 채널에 발생하는 상호 심볼간 간섭을 억압하기 위해 LMS 알고리즘을 사용한다. 이 알고리즘은 원하는 응답과 실제 출력간의 차인 에러를 이용하여 탭 가중치 조절 메카니즘을 통해 탭 가중치를 갱신함으로서 효과적으로 간섭을 제거하였다. 본 논문은 상호 심볼간 간섭을 효율적으로 억압해온 기존의 LMS알고리즘에 다계층 퍼셉트론 신경망을 조합 한 새로운 LMSBP 알고리즘을 제안하였으며, 제안된 알고리즘을 토해 탭 가중치 갱신이 보다 효율적으로 이루어짐을 알 수 있다. 시뮬레이션 결과를 통해 제안된 알고리즘의 평균 자승 에러의 수렴 특성이 LMS 알고리즘을 이용한 수렴특성보다 우월하다는 것을 나타내었다.

  • PDF

부하를 고려한 동적 가중치 기반 라운드로빈 스케쥴링 알고리즘 (Dynamic Weight Round Robin Scheduling Algorithm with Load)

  • 김성;김경훈;류재상;남지승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 추계학술발표논문집 (하)
    • /
    • pp.1295-1298
    • /
    • 2001
  • 멀티미디어 스트리밍 서비스를 제공하는 서버의 동적 부하분산을 위한 동적 가중치 기반 라운드 로빈 스케줄링 알고리즘을 제안한다. 기존의 가중치 기반 라운드로빈 알고리즘은 서버의 처리 용량만을 이용하여 가중치를 부여하므로 요청이 폭주할 경우 동적 부하 불균형을 갖게 된다. 동적 부하 불균형을 해결하기 위해 제안한 동적 가중치 기반 라운드로빈 알고리즘은 서버의 처리 용량뿐만 아니라 서버의 동적 부하를 이용하여 가중치를 부여하므로 동적 부하 불균형에 잘 적응하여 부하를 균형있게 조절한 수 있다. 제안한 알고리즘은 각 서버의 처리용량을 기준으로 가중치를 계산하고 동적으로 변하는 서버의 부하값에 가중치를 적용한다. 그 결과 동적 부하 불균형 문제를 해결했으며, 더 세밀한 부하 조절 기능을 수행할 수 있었다

  • PDF

클러스터 시스템의 부하분산 알고리즘의 효율성 비교분석 (An Analysis and Comparison on Efficiency of Load Distribution Algorithm in a Clustered System)

  • 김석찬;이영
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제12권2호
    • /
    • pp.111-118
    • /
    • 2006
  • 본 연구에서는 클러스터 시스템에 적용되는 새로운 부하할당 알고리즘을 기존의 알고리즘과 비교하여 분석하고자 한다. PWLC 알고리즘은 설정된 가중치 산정주기마다. 시스템의 부하를 감지하여, 각 서버에 가중치를 부여하여 다음 주기에 가중치에 의하여 부하를 분산시키는 알고리즘이다. PWLC 알고리즘과 DWRR 알고리즘을 가중치 산정주기를 변화시키면서 분산과 대기시간 등에 비교하였다. 가중치 산정주기가 너무 짧으면 시스템은 부하를 감지하는데 잉여부하가 소요될 수 있으며, 이와 반대로, 가중치 산정주기가 너무 길면 알고리즘 적용에 의한 부하할당이 비효율적으로 될 수 있다. PWLC 알고리즘이 DWRR 알고리즘보다. 더 효율적임을 알 수 있다.

DS/SS 통신에서 BISP 알고리즘을 이용한 탭 가중치 갱신 (Tap-Weight Update Multilayer Neural Network using BISP Algorithm in DS/SS Communication)

  • 석경휴;김문환;임영진;김광준;배철수;나상동
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.712-716
    • /
    • 2003
  • 본 논문은 신경망을 이용한 간섭 신호 제어로써 복합 다중 퍼셉트론에서 DS/SS 이동 통신에서의 수신된 신호들을 역전파 학습알고리즘을 이용하여 검출하는 것에 대하여 연구한다. 수신 신호가 일정한 비트율을 갖는 채널에 전송하기 위하여 신경망을 이용한 새로운 탭 가중치 갱신 제어 방법을 제안한다. 적응 횡단선 필터는 심볼간의 채널에 발생하는 상호 심볼간 간섭을 억압하기 위해 LMS 알고리즘 사용한다. 이 알고리즘은 원하는 응답과 실제 출력간의 차인 에러를 이용하여 탭 가중치 조절 메카니즘을 통해 탭 가중치를 갱신함으로서 효과적으로 간섭을 제거하였다. 본 논문은 상호 심볼간 간섭을 효율적으로 억압해온 기존의 LMS 알고리즘에 다계층 퍼셉트론 신경망을 조합한 새로운 BISP 알고리즘을 제안하였으며, 제안된 알고리즘을 통해 탭 가중치 갱신이 보다 효율적으로 이루어짐을 알 수 있다. 시뮬레이션 결과를 통해 제안된 알고리즘의 평균 자승 에러의 수렴 특성이 기존 LMS 알고리즘을 이용한 수렴특성보다 우월하다는 것을 나타내었다.

  • PDF

연결지향 네트워크에서의 가중치 최소극대 공정 라우팅 알고리즘 (Weighted Maxmin Fair Routing Algorithm in Connection-Oriented Network: Soft QoS(SQS) Service)

  • 원현권;권오흠
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (중)
    • /
    • pp.1237-1240
    • /
    • 2002
  • 본 논문에서는 ATM과 같은 연결 지향적 고속네트워크에서, 가중치를 가진 Flow들의 대역폭 할당과 라우팅문제에 있어 공정성과 처리량에 대하여 고려해 보았다. 가중치클 고려치 않은 Flow들에 대한 최적경로설정문제에 대하여, 기존의 QoS 서비스와 Best-Effort 서비스에서 연구된 라우팅알고리즘에서 벗어나, 본 논문은 가중치를 가진 Flow들에 대하여 Soft-QoS서비스를 지원함에 있어서 공정성과 최대 처리량을 정의하고, 또한 이를 바탕으로 가중치 최소극대 대역폭 할당과 가중치 최소극대 공정라우팅 알고리즘을 제안한다. 종단간 최적경로를 설정하는데, 최소비용으로 Bottleneck-Link를 구하고 대역폭을 할당하기 위하여 그래프 상의 노드에 두 가지 색을 사용하는 그래프문제(Graph Coloring)와 최악의 경우를 감안하면서 경로를 선택하는 최소극대화 문제(Maxmin)를 결부시켜 살펴본다. 나아가 Soft-QoS 서비스의 최대값과 최소값을 고려한 가중치를 가진 Weighted-Flow들의 대역폭 할당과 경로설정에 있어, 동적인 네트워크 환경에 보다 효율적으로 접근 가능한 근사 알고리즘을 제안한다.

  • PDF

가중치에 따른 질의확장의 검색효율성 (Retrieval Effectiveness of Query Expansion depending on Term Weights)

  • 최성환
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2002년도 제9회학술대회 논문집
    • /
    • pp.259-264
    • /
    • 2002
  • 기존의 질의확장 혹은 적합성 피드백 연구에서 코사인 정규화를 사용하여 검색성능을 향상시킨 연구들이 많다. 본 논문에서 실험한 결과를 근거로 하였을 때 이는 낮은 검색성능을 보였던 것이 검색공간의 확장으로 성능이 크게 향상되었을 가능성이 있다. 실험결과 가중치 유사도 모델간의 커다란 차이는 보이지 않고 코사인정규화 가중치 알고리즘에서 상당한 성능향상이 있었다. 그러나 기존의 코사인정규화 가중치 알고리즘을 이용한 전역적 질의확장의 경우 성능 향상률은 높으나 원질의어를 이용하여 가장 좋은 성능을 보였던 가중치 알고리즘들의 검색성능과 비교하면 오히려 낮은 성능을 보였다.

  • PDF

희귀 목적값 분류를 위한 학습 알고리즘 (A New Learning Algorithm for Rare Class Classification)

  • 이광호;이창환
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 추계학술발표대회
    • /
    • pp.39-42
    • /
    • 2006
  • 본 논문에서는 데이터 마이닝에서 발생되는 희귀 데이터를 분석하기 위한 희귀 목적값 분석의 새로운 알고리즘을 제시한다. 이를 위하여 속성들이 가지는 속성의 가중치 값과 속성값이 목적 속성에 미치는 가중치값을 정보이론에 입각하여 가중치 계산을 하고, 계산된 가중치값을 사용하여 스코어링 함으로써 희귀 목적값에 속한 데이터 예측/분류에 사용하는 방법을 제시하였다. 실험을 통해 본 알고리즘의 성능을 입증함은 물론 제안된 알고리즘이 희귀 데이터의 분류/학습에 좀 더 효과적이다는 것을 보였다.

  • PDF