• Title/Summary/Keyword: 가중치평균

Search Result 595, Processing Time 0.025 seconds

Improving the Effectiveness of Information Retrieval Using Data Fusion Method in the Vector and Neural Network Model (벡터와 신경망 모델에서 데이터 퓨전 기법을 이용한 정보검색의 효율성 향상)

  • 최성환
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2001.08a
    • /
    • pp.137-142
    • /
    • 2001
  • 본 논문에서는 벡터모델과 신경망 모델을 이용하여 데이터 퓨전의 관점에서 다중증거로서 가중치, 문헌분리가, 엔트로피, 공기유사도를 적절히 결합하여 질의를 확장하는 방법을 제안한다. 실험결과 코사인 정규화 가중치 알고리즘, 문서길이 정규화 가중치 알고리즘과 결합하여 질의를 확장하는 것이 정규화시키지 않고 단순히 문헌빈도와 역문헌빈도의 조합을 이용한 가중치 알고리즘과 결합했을 때 보다 평균 정확률 향상이 더 높게 나타났다. 또한 다양한 공기기반 유사도를 이용하여 질의확장을 한 결과 벡터모델과 신경망 모델에서 코사인 공기유사도에 기반하여 질의확장한 경우가 다른 공기유사도에 비해 더 좋은 성능을 보였다.

  • PDF

Attention-Based Ensemble for Mitigating Side Effects of Data Imbalance Method (데이터 불균형 기법의 부작용 완화를 위한 어텐션 기반 앙상블)

  • Yo-Han Park;Yong-Seok Choi;Wencke Liermann;Kong Joo Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.546-551
    • /
    • 2023
  • 일반적으로 딥러닝 모델은 모든 라벨에 데이터 수가 균형을 이룰 때 가장 좋은 성능을 보인다. 그러나 현실에서는 특정라벨에 대한 데이터가 부족한 경우가 많으며 이로 인해 불균형 데이터 문제가 발생한다. 이에 대한 해결책으로 오버샘플링과 가중치 손실과 같은 데이터 불균형 기법이 연구되었지만 이러한 기법들은 데이터가 적은 라벨의 성능을 개선하는 동시에 데이터가 많은 라벨의 성능을 저하시키는 부작용을 가지고 있다. 본 논문에서는 이 문제를 완화시키고자 어텐션 기반의 앙상블 기법을 제안한다. 어텐션 기반의 앙상블은 데이터 불균형 기법을 적용한 모델과 적용하지 않은 모델의 출력 값을 가중 평균하여 최종 예측을 수행한다. 이때 가중치는 어텐션 메커니즘을 통해 동적으로 조절된다. 그로므로 어텐션 기반의 앙상블 모델은 입력 데이터 특성에 따라 가중치를 조절할 수가 있다. 실험은 에세이 자동 평가 데이터를 대상으로 수행하였다. 실험 결과로는 제안한 모델이 데이터 불균형 기법의 부작용을 완화하고 성능이 개선되었다.

  • PDF

A Korean Homonym Disambiguation Model Based on Statistics Using Weights (가중치를 이용한 통계 기반 한국어 동형이의어 분별 모델)

  • 김준수;최호섭;옥철영
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1112-1123
    • /
    • 2003
  • WSD(word sense disambiguation) is one of the most difficult problems in Korean information processing. The Bayesian model that used semantic information, extracted from definition corpus(1 million POS-tagged eojeol, Korean dictionary definitions), resulted in accuracy of 72.08% (nouns 78.12%, verbs 62.45%). This paper proposes the statistical WSD model using NPH(New Prior Probability of Homonym sense) and distance weights. We select 46 homonyms(30 nouns, 16 verbs) occurred high frequency in definition corpus, and then we experiment the model on 47,977 contexts from ‘21C Sejong Corpus’(3.5 million POS-tagged eojeol). The WSD model using NPH improves on accuracy to average 1.70% and the one using NPH and distance weights improves to 2.01%.

Comparison of Customer Satisfaction Indices Using Different Methods of Weight Calculation (가중치 산출방법에 따른 고객만족도지수의 비교)

  • Lee, Sang-Jun;Kim, Yong-Tae;Kim, Seong-Yoon
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.201-211
    • /
    • 2013
  • This study compares Customer Satisfaction Index(CSI) and the weight for each dimension by applying various methods of weight calculation and attempts to suggest some implications. For the purpose, the study classified the methods of weight calculation into the subjective method and the statistical method. Constant sum scale was used for the subjective method, and the statistical method was again segmented into correlation analysis, principal component analysis, factor analysis, structural equation model. The findings showed that there is difference between the weights from the subjective method and the statistical method. The order of the weights by the analysis methods were classified with similar patterns. Besides, the weight for each dimension by different methods of weight calculation showed considerable deviation and revealed the difference of discrimination and stability among the dimensions. Lastly, the CSI calculated by various methods of weight calculation showed to be the highest in structural equation model, followed by in the order of regression analysis, correlation analysis, arithmetic mean, principal component analysis, constant sum scale and factor analysis. The CSI calculated by each method showed to have statistically significant difference.

Patch based Multi-Exposure Image Fusion using Unsharp Masking and Gamma Transformation (언샤프 마스킹과 감마 변환을 이용한 패치 기반의 다중 노출 영상 융합)

  • Kim, Jihwan;Choi, Hyunho;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.702-712
    • /
    • 2017
  • In this paper, we propose an unsharp masking algorithm using Laplacian as a weight map for the signal structure and a gamma transformation algorithm using image mean intensity as a weight map for mean intensity. The conventional weight map based on the patch has a disadvantage in that the brightness in the image is shifted to one side in the signal structure and the mean intensity region. So the detailed information is lost. In this paper, we improved the detail using unsharp masking of patch unit and proposed linearly combined the gamma transformed values using the average brightness values of the global and local images. Through the proposed algorithm, the detail information such as edges are preserved and the subjective image quality is improved by adjusting the brightness of the light. Experiment results show that the proposed algorithm show better performance than conventional algorithm.

Region-Based Image Retrieval System using Spatial Location Information as Weights for Relevance Feedback (공간 위치 정보를 적합성 피드백을 위한 가중치로 사용하는 영역 기반 이미지 검색 시스템)

  • Song Jae-Won;Kim Deok-Hwan;Lee Ju-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.1-7
    • /
    • 2006
  • Recently, studies of relevance feedback to increase the performance of image retrieval has been activated. In this Paper a new region weighting method in region based image retrieval with relevance feedback is proposed to reduce the semantic gap between the low level feature representation and the high level concept in a given query image. The new weighting method determines the importance of regions according to the spatial locations of regions in an image. Experimental results demonstrate that the retrieval quality of our method is about 18% in recall better than that of area percentage approach. and about 11% in recall better than that of region frequency weighted by inverse image frequency approach and the retrieval time of our method is a tenth of that of region frequency approach.

  • PDF

Adaptive Interpolation for Intra Frame in H.264 using Disturbance Function (H.264 인트라 프레임에서의 방해함수를 이용한 적응적인 인터폴레이션 기법)

  • Park, Mi-Seon;Jeon, Sung-Hun;Lee, Gue-Sang
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.545-548
    • /
    • 2005
  • H.264의 인트라 프레임 에러복원기법은 상하좌우 인접한 블록의 픽셀을 사용하여 거리의 가중치 평균값으로 손실된 블록을 복원한다. H.264의 인트라 프레임 에러복원기법으로 복원된 블록은 주변블록 픽셀들의 평균을 취하기 때문에 그로 인해 생기는 블러링 현상을 피할 수 없다. 이를 개선하기 위하여 주변블록의 에지정보를 이용하여 인터폴레이션하는 방법이 제안되었으나 에지성분이 다양하거나 에지성분이 없는 경우, 블록을 복원하는 데 있어서 기존 H.264의 복원기법보다 성능이 저하되는 문제점이 있다. 본 논문에서는 주변블록의 정보를 이용하여 손실된 블록의 인터폴레이션의 에지방향을 추정하고 방해함수를 통해서 임계치를 결정하여 적응적으로 에지방향의 인터폴레이션과 가중치평균 인터폴레이션을 선택하여 복원하는 방법을 제안한다. 에지방향의 인터폴레이션에서는 선택된 전체에지방향과 상하좌우 각각의 주변블록의 에지방향들간의 상호 관계를 고려함으로써 최종적으로 최적에지 방향을 선택하여 성능을 향상시킨다. 제안된 방법은 영상에 따라 H.264 에러복원기법보다 객관적인 화질이 $0.5dB\;{\sim}\;2dB$ PSNR 향상을 보였고 주관적인 화질개선의 결과를 보였다.

  • PDF

A Study on Off-Line Signature Verification using Directional Density Function and Weighted Fuzzy Classifier (가중치 퍼지분류기와 방향성 밀도함수를 이용한 오프라인 서명 검증에 관한 연구)

  • 한수환;이종극
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.6
    • /
    • pp.592-603
    • /
    • 2000
  • This paper is concerning off-line signature verification using a density function which is obtained by convolving the signature image with twelve-directional $5\times{5}$ gradient masks and the weighted fuzzy mean classifier. The twelve-directional density function based on Nevatia-Babu template gradient is related to the overall shape of a signature image and thus, utilized as a feature set. The weighted fuzzy mean classifier with the reference feature vectors extracted from only genuine signature samples is evaluated for the verification of freehand forgeries. The experimental results show that the proposed system can classify a signature whether it is genuine or forged with more than 98% overall accuracy even without any knowledge of varied freehand forgeries.

  • PDF

Distance Weighted Filter based on Standard Deviation Distribution for AWGN Removal (AWGN 제거를 위한 표준편차 기반의 거리가중치 필터)

  • Park, Hwa-Jung;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.118-120
    • /
    • 2021
  • In modern society, with the development of IoT technology, various digital equipment is being distributed in a wide range of fields such as CCTV and exploration robots. Accordingly, the importance of data processing is increasing, and various studies are being conducted to remove noise generated in the process of receiving data in the imaging field. Representative noise includes additive white Gaussian noise (AWGN), and existing filters for removing noise include an average filter (AF), an alpha trimmed average filter (A-TAF), and a median filter (MF). However, existing filters have a disadvantage in that they show somewhat insufficient performance in noise removal characteristics in high frequency areas. Therefore, in this paper, in order to effectively remove AWGN existing in the high frequency region, a weight filter according to a distance based on the standard deviation is proposed.

  • PDF

K-means Clustering Method according to Documentation Numbers (문서 수에 따른 가중치를 적용한 K-means 문서 클러스터링)

  • 조시성;안동언;정성종;이신원
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1557-1560
    • /
    • 2003
  • 본 논문에서는 이 문서 클러스터링 방법 중 계층적 방법인 Kmeans 클러스터링 알고리즘을 이용하여 문서를 클러스터링 하고자 한다. 기존의 Kmeans 클러스터링 알고리즘은 문서의 수가 많을 경우 하나의 클러스터링에 너무 많은 문서들이 할당되는 문제점이 있다. 이 치우침을 완화하고자 각 클러스터링에 할당된 문서 수에 따라서 문서에 가중치를 부여한 후 다시 클러스터링을 하는 방법을 제안하였다. 실험 결과는 정확률, 재현율을 결합한 조화 평균(F-measure)을 사용하여 평가하였으며 기존 알고리즘보다 9%이상의 성능 향상을 나타냈다.

  • PDF