• Title/Summary/Keyword: 가정 기반 진리 유지 시스템

Search Result 2, Processing Time 0.016 seconds

Solving Non-deterministic Problem of Ontology Reasoning and Identifying Causes of Inconsistent Ontology using Negated Assumption-based Truth Maintenance System (NATMS를 이용한 온톨로지 추론의 non-deterministic 문제 해결 및 일관성 오류 탐지 기법)

  • Kim, Je-Min;Park, Young-Tack
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.5
    • /
    • pp.401-410
    • /
    • 2009
  • In order to derive hidden information (concept subsumption, concept satisfiability and realization) of OWL ontology, a number of OWL reasoners have been introduced. The most of these ontology reasoners were implemented using the tableau algorithm. However most reasoners simply report this information without providing a justification for any arbitrary entailment and unsatisfiable concept derived from OWL ontologies. The purpose of this paper is to investigate an optimized method for non-deterministic rule of the tableau algorithm and finding axioms to cause inconsistency in ontology. In this paper, therefore, we propose an optimized method for non-deterministic rule and finding axiom to cause inconsistency using NATMS. In the first place, we introduce Dependency Directed Backtracking to deal non-deterministic rule, a tableau-based decision procedure to find unsatisfiable axiom Furthermore we propose an improved method adapting NATMS.

Distributed Assumption-Based Truth Maintenance System for Scalable Reasoning (대용량 추론을 위한 분산환경에서의 가정기반진리관리시스템)

  • Jagvaral, Batselem;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1115-1123
    • /
    • 2016
  • Assumption-based truth maintenance system (ATMS) is a tool that maintains the reasoning process of inference engine. It also supports non-monotonic reasoning based on dependency-directed backtracking. Bookkeeping all the reasoning processes allows it to quickly check and retract beliefs and efficiently provide solutions for problems with large search space. However, the amount of data has been exponentially grown recently, making it impossible to use a single machine for solving large-scale problems. The maintaining process for solving such problems can lead to high computation cost due to large memory overhead. To overcome this drawback, this paper presents an approach towards incrementally maintaining the reasoning process of inference engine on cluster using Spark. It maintains data dependencies such as assumption, label, environment and justification on a cluster of machines in parallel and efficiently updates changes in a large amount of inferred datasets. We deployed the proposed ATMS on a cluster with 5 machines, conducted OWL/RDFS reasoning over University benchmark data (LUBM) and evaluated our system in terms of its performance and functionalities such as assertion, explanation and retraction. In our experiments, the proposed system performed the operations in a reasonably short period of time for over 80GB inferred LUBM2000 dataset.