• Title/Summary/Keyword: 가전제품의 리싸이클링

Search Result 11, Processing Time 0.021 seconds

Urban Mine Resources and Metals Recycling Industries in Japan (일본(日本)의 도시광산(都市鑛山)(사용후제품) 자원(資源)과 금속(金屬) 재자원화산업(再資源化産業))

  • Oh, Jae-Hyun;Kim, Joon-Soo;Moon, Suk-Min;Min, Ji-Won
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.11-26
    • /
    • 2010
  • In order to review the recycling status of urban mine resources in Japan, metal consumption, metal recycling rate and metal recycling industry such as iron scrap, end of life vehiclcs(ELV), waste home appliances and spent IT equipments were surveyed. Japan took rank of top class in the world on the metal consumption and urban mine stock reserve. Metal recycling industries in Japan have been developed through excellent technologies for mineral processing and non-ferrous smelting. On the other hand, the technologies for recycling of rare metals are being developed now. Recycling rate of EL V, waste home appliances and personal computer are higher than the guidelines of the legislative standard.

Overview and Recent Development of Recycling Small Waste Electrical and Electronic Equipment (WEEE) (폐소형가전제품 재활용 현황과 전망)

  • Jung, Insang;Park, Jihwan;Hwang, Jongsoo;Choi, Wonhee
    • Resources Recycling
    • /
    • v.24 no.4
    • /
    • pp.38-49
    • /
    • 2015
  • The importance of recycling came to the fore by increasing of waste electrical and electronic equipment(WEEE) generation. Small WEEE recycling in particular represents a big challenge in Korea because it has various items and components. Main materials of small WEEE are typically well known for metals (copper, iron, aluminum, etc.), PCBs and plastics. Not only Korea but also overseas, the laws for small WEEE were in effect in order to recycle effectively, but the technology is not catched up with the regulation which has to recycle an allocated account of WEEE. In addition, recycling technologies and processes for small WEEE are not developed enough to recycling center properly. In that sense, if we develope the recycling process, have not only technology competitiveness but also resource conservation, improving the environment and economic profits. Therefore, through the analysis of economic value of recycled small WEEE, and current technologies both domestically and internationally, we design conceptual recycling process of small WEEE, and consider the way forward.

Environmental Problems and Recycling Technology for PS Resins (PS수지의 환경부하 및 그 RECYCLE기술)

  • 김정호
    • Resources Recycling
    • /
    • v.6 no.2
    • /
    • pp.60-69
    • /
    • 1997
  • The paper lists various polymcr materials and lheir usage. It also presents the current stahls and projected estimation of the production of thzse resins and problems associated with these resins. A special section has been dedicated towards the problems associated with and recycle strategies for EPS. It also reviews various technologies treating PS resins.

  • PDF

Current Status of Collection and Recycling of Used Plastics (폐플라스틱의 수거 및 재활용 현황)

  • 나근배
    • Resources Recycling
    • /
    • v.6 no.2
    • /
    • pp.47-59
    • /
    • 1997
  • Thc paper points oul ever increasing amounts of plastics used in dex, clopmg countries and the prohlelns associated with such increase. Tl~e current status of the production and usc of plaslic materials is reviewed. Also reviewed lncludc thc pahcicies and gu~dclmcs canccrning the treatment of used plastics which have already bccn mstitutcd.

  • PDF

A Study on Physical Characteristics and Plastics Recycling of Used Small Household Appliances (폐소형가전의 물리적 성상 분석 및 플라스틱 재활용에 관한 연구)

  • Choi, Woo Zin;Park, Eun Kyu;Kang, Seok Hwan;Jung, Bam Bit;Kim, Soo Kyung
    • Resources Recycling
    • /
    • v.25 no.1
    • /
    • pp.31-39
    • /
    • 2016
  • Small household appliances such as electric rice cooker, a vacuum cleaner, an electric fan, etc. are diverse and complex due to the materials and components and waste streams from the manufacturing processes. In the present study, physical characterization of small e-wastes was analyzed on major items including electric rice cooker after manual dismantling. Small household appliances is an important potential source of waste plastic, however, recycling plastics from small e-waste is still unusual. The present communication gives results of separation processes on black plastics and the limitations of these sorting processes in used small household appliances.

Separation of Mixed Plastics using the Drum type Tribo-Electrostatic Separation Process (드럼형 마찰대전장치를 이용한 혼합플라스틱의 정전선별)

  • Kim Do Kyun;Cho Hee Chan;Jeon Ho Seok
    • Resources Recycling
    • /
    • v.13 no.1
    • /
    • pp.39-46
    • /
    • 2004
  • Triboelectrostatic separation process is a technology that different particles charged after contact and rubbing different materials are separated in a high electric field. This technology has an advantage in that it can be used for separating non-conducting materials such as plastics unlike other electrostatic separation processes. There are two objectives in this study. One is to develop an effective continuous tribo-electrostatic separation process. The other is to apply the developed device for the separation of mixed plastics. Results show that almost all tested plastics reaches over 95% in yield and grade after separation.

Technical Trends in the Patents and Papers for the Recycling of Organic Residues from Waste Printed Circuit Boards (특허(特許)와 논문(論文)으로 본 폐(廢)PCB 유기계(有機界) 잔유물(殘留物) 재활용(再活用) 기술(技術) 동향(動向))

  • Lee, Dai-Soo;Shin, Sera;Cho, Young-Ju;Cho, Bong-Gyoo
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.71-77
    • /
    • 2013
  • Electronic products such as appliances, computers, and cellular phones have printed circuit boards (PCBs) in common and the PCBs in the waste electronic products contain valuable metals and organic resins. In Korea, recovery and recycling of the organic resins as well as the valuable metallics from the wastes are required indeed as the most of resources are being imported from abroad. In this article, the patents and papers for the recycling of organic residues from the waste PCBs were collected and analyzed. The open patents of USA (US), European Union (EP), Japan (JP), and Korea (KR) and SCI journals from 1979 to 2012 were investigated. The patents and journals were collected using key-words and filtered by the definition of the technology. The patents and journals were analyzed by the years, countries, companies, and technologies and the technical trends were discussed in this paper. It is showed sluggish relatively activity of published papers and patent applications for polymer manufacturing technology in local and abroad.

Overview and Recent Development of Recycling Waste Refrigerators (폐(廢) 냉장고(冷藏庫) 재활용(再活用) 현황(現況)과 기술(技術) 전망(展望))

  • Yang, Hyunseok;Kim, Geon-Hong;Kong, Man-Sik;Park, Kiejin;Lee, Gwang Weon;Kim, Bo Saeng
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.70-80
    • /
    • 2013
  • Waste refrigerator is the most large amount of item being recycled and the recycling process is the most complicated in WEEE (Waste Electrical and Electronic Equipment) because refrigerator is biggest product and consists of various parts and materials such as ferrous, non-ferrous, and plastics. Recently, recycling process of waste refrigerator has been being more complex since large capacity 2 door refrigerators and standing Kimchi refrigerators with various material are distributed on custom market. In addition, recycling of valuable resource from waste refrigerator is mandatory by WEEEs recycling legislation; therefore, high efficiency recycling enough for economic and environment-friendly recovery of valuable resource through present technical situation analysis and comparison of recycling technologies of waste refrigerator with advanced country.

Development of Automatic Sorting System for Black Plastics Using Laser Induced Breakdown Spectroscopy (LIBS) (LIBS를 이용한 흑색 플라스틱의 자동선별 시스템 개발)

  • Park, Eun Kyu;Jung, Bam Bit;Choi, Woo Zin;Oh, Sung Kwun
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.73-83
    • /
    • 2017
  • Used small household appliances have a wide variety of product types and component materials, and contain high percentage of black plastics. However, they are not being recycled efficiently as conventional sensors such as near-infrared ray (NIR), etc. are not able to detect black plastic by types. In the present study, an automatic sorting system was developed based on laser-induced breakdown spectroscopy (LIBS) to promote the recycling of waste plastics. The system we developed mainly consists of sample feeder, automatic position recognition system, LIBS device, separator and control unit. By applying laser pulse on the target sample, characteristic spectral data can be obtained and analyzed by using CCD detectors. The obtained data was then treated by using a classifier, which was developed based on artificial intelligent algorithm. The separation tests on waste plastics also were carried out by using a lab-scale automatic sorting system and the test results will be discussed. The classification rate of the radial basis neural network (RBFNNs) classifier developed in this study was about > 97%. The recognition rate of the black plastic by types with the automatic sorting system was more than 94.0% and the sorting efficiency was more than 80.0%. Automatic sorting system based on LIBS technology is in its infant stage and it has a high potential for utilization in and outside Korea due to its excellent economic efficiency.