• 제목/요약/키워드: 가우시안

검색결과 1,254건 처리시간 0.027초

Mean Shift 알고리즘 기반의 히스토그램 근사화를 이용한 피부 영역 검출 (Skin Region Detection Using Histogram Approximation Based Mean Shift Algorithm)

  • 변기원;주재흠;남기곤
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.21-29
    • /
    • 2011
  • 사전에 정의된 피부 색상 정보를 이용한 기존 피부 검출 방법들은 배경과 피부 영역을 분할하는 단계에서 사용되는 임계값을 실험을 통하여 주관적 관점에서 결정하였다. 또한 기존 방법들은 배경 환경과 조명 환경에 따라 각각 다른 임계값을 설정하였다. 이러한 기존 방법들은 반복 실험을 통하여 추정된 임계값에 따라 성능이 좌우되는 단점이 제시되었다. 제시된 기존 방법들의 단점을 극복하기 위하여 본 논문은 mean shift 알고리즘 기반의 히스토그램 근사화를 이용한 피부 영역 검출 방법을 제안한다. 제안하는 방법은 CbCr 컬러공간에서의 표준 피부색상과 유사도를 비교하여 생성된 입력 영상의 피부맵(skin-map)의 히스토그램에서 mean shift 방법을 이용하여 각각 밝기 영역별로 수렴하는 극대점을 능동적으로 찾아서 배경 영역과 피부영역으로 분할한다. 히스토그램은 픽셀의 명도값에 따라 누적되는 불연속 함수의 형태를 가지므로 베이지 곡선(Bezier curve) 기법을 이용하여 연속 가우시안 함수로 근사화된다. 따라서 제안하는 방법은 기존 방법에서처럼 수동적으로 임계값을 설정하는 방법을 사용하지 않고 mean shift 기법을 이용하여 능동적으로 영역 분할점인 극대점을 찾아서 피부 영역을 검출한다. 제안된 방법은 실험을 통하여 강인하고 효율적으로 피부 영역을 검출하였다.

잡음 영상에서 국부 영역의 반복적인 위상 상관도를 이용한 부화소 이동량 추정방법 (Subpixel Shift Estimation in Noisy Image Using Iterative Phase Correlation of A Selected Local Region)

  • 하호건;장인수;고경우;하영호
    • 대한전자공학회논문지SP
    • /
    • 제47권1호
    • /
    • pp.103-119
    • /
    • 2010
  • 본 논문에서는 원 영상에서 특정한 국부 영역을 선택하고 선택된 국부 영역에 반복적인 위상 상관도를 수행함으로써 잡음을 가지고 있는 영상에서 정확한 부화소(subpixel) 이동량을 추정하는 방법을 제안한다. 기존의 방법은 영상 전체를 이용해 위상 상관도를 수행 한 후 포물선, sinc 같은 함수 보간을 통해 간접적으로 부화소 이동량을 추정하였다. 이 같은 추정방법은 정확하나 백색 가우시안 잡음(additive white gaussian noise)이나 에일리어싱(aliasing)과 같은 잡음이 영상에 존재하면 정확한 부화소 이동량 추정이 어렵다. 그래서 영상 전체를 이용하기 보다는 잡음이 적은 국부 영역을 선택하여 이를 이용해 위상 상관도를 수행하고 부화소 이동량을 계산할 때 기존의 함수의 보간을 사용하기 않고 반복적으로 위상 상관도를 수행함으로써 잡음에 강한 부화소 이동량을 추정 방법을 제안하였다. 또한 위상 상관도 함수의 분석을 통해 위상 상관도 반복횟수를 줄이는 방법도 제안하였다. 실험을 통해 제안한 방법과 기존의 방법으로 추정한 부화소 이동량의 오차를 비교하고 초해상도 영상을 만들어 봄으로써 제안한 방법이 잡음이 있는 조건에서 더 정확한 부화소 이동량 추정성능을 보여줌을 알 수 있었다.

등급기준 교란을 통한 단순 박테리아협동 최적화의 성능향상 (Performance Improvement of Simple Bacteria Cooperative Optimization through Rank-based Perturbation)

  • 정성훈
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권12호
    • /
    • pp.23-31
    • /
    • 2011
  • 최적화 알고리즘의 하나로 제안한 단순 박테리아협동 최적화는 비교적 좋은 성능을 보였으나 개체가 한 번에 한 스텝씩 움직이는 것으로 말미암아 성능에 한계가 발생하였다. 이러한 문제를 해결하고자 개체에 등급을 매기고 등급별로 개체의 속력을 할당하는 방법을 제안하여 어느 정도의 성능향상을 보았다. 본 논문에서는 개체에 속력을 할당하는 방법에 추가적으로 성능향상을 위하여 기존의 진화적 최적화 알고리즘들이 많이 사용한 돌연변이를 새로 추가한 알고리즘을 제안한다. 새로 추가한 돌연변이에서는 적합도가 좋지 않은 일정 퍼센트의 개체를 해당 개체의 등급에 비례하는 영역내로 돌연변이를 일으킨다. 즉, 적합도가 낮아 등급이 낮으면 더 큰 표준편차의 가우시안 잡음을 섞어서 돌연변이를 발생한다. 결국 낮은 등급을 갖는 개체들은 부모로부터 멀리 떨어질 확률이 증가하게 된다. 이렇게 함으로서 개체가 지역 최적해 영역에 빠질 가능성을 줄이고 지역 최적해 영역에 빠져도 빠르게 나올 수 있는 가능성이 높아진다. 네개의 함수 최적화 문제에 적용해본 결과 개체 속력과 돌연변이를 함께 적용했을 경우에 성능이 향상되는 것을 보았다. 다만, 아주 복잡도가 높은 함수에서는 반드시 좋아지지 만은 않았는데, 추후 이를 해결하기 위한 다른 방법을 고안해야할 것으로 판단된다.

독립요소분석을 이용한 태아심전도 추출을 위한 시변 칼만 평활기의 개발 : 예비연구 (Development of Time Varying Kalman Smoother for Extracting Fetal ECG using Independent Component Analysis : Preliminary Study)

  • 이충근;김봉수;권자영;최영득;송광섭;남기창
    • 전자공학회논문지
    • /
    • 제49권10호
    • /
    • pp.202-208
    • /
    • 2012
  • 태아심박의 모니터링은 태아의 안녕을 평가하기 위해 중요한 정보이다. 비관혈적인 태아심전도는 산모의 복부 신호로부터 추출될 수 있다. 따라서 산모 복부의 혼합 신호로부터 태아심전도를 추출하기 위해 많은 유망한 신호처리 방법들이 개발되어 왔다. 그러나 비관혈적인 태아심전도는 안정적인 신호 측정법이 부족하고 신호처리 방법의 어려움으로 여전히 임상에서 널리 적용되지 못하고 있다. 태아심전도를 추출하는 신호처리 결과는 가우시안 백색잡음에 의해 신호대잡음비가 낮아질 수 있다. 본 논문에서는 태아심전도에서 시간에 따라 변하는 백색잡음 신호를 제거하여 신호대잡음비를 높이기 위한 방법으로 시변 칼만 평활기를 제안하였고 그 가능성을 확인하였다. Wiener 과정을 시스템 모델로 설정하고 백색잡음 크기에 따라 공분산 행렬을 수정하였으며, 이를 통해 칼만 이득을 변화시켜 평활화 정도를 가변시킬 수 있도록 설계하였다. 5채널 태아심전도 모델을 이용하여 백색잡음의 크기에 따른 최적 공분산 행렬 값을 구하였고, 모의실험을 통해 제안된 방법의 가능성을 확인할 수 있었다.

도플러 주파수에 의한 무인 비행체의 통신 성능 분석 (Communication performance analysis of unmanned aerial vehicle by Doppler frequency)

  • 이희권;염성관;김용갑
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권6호
    • /
    • pp.612-618
    • /
    • 2019
  • 무인 이동체 관련 산업은 4차 산업혁명 기술발전과 더불어 공공 및 민간 수요의 급증으로 시장이 폭발적으로 성장하고 있다. 뿐만 아니라 통신 서비스에도 무인 이동체가 활용되고 있다. 본 논문에서는 도플러 주파수의 특성에 따른 무인 비행체의 통신 성능을 분석하였다. 무인 비행체의 기하학적 모델을 이용하여 도플러 주파수를 계산하고, 제어기의 위치를 원점으로 고속의 무인 비행체를 고려하여 시속 10km, 30km, 300km, 1000km의 도플러 주파수와 AWGN에 의한 BER 성능을 측정하였다. 도플러 주파수 모델은 Dent 모델을 이용하였으며, 가산성 백색 가우시안 잡음(AWGN)을 추가하여 송신단과 수신단의 비트 오차를 확인하였다. 저속의 무인 비행체는 일반적으로 0.2의 BER 성능을 나타내었으며, 고속의 무인 비행체는 일반적으로 0.06의 BER 성능을 나타내었다. 동일한 속도에서 주파수 대역이 증가하면 BER 성능은 증가하였으며, 동일한 주파수 대역에서 속도가 증가하면 BER 성능은 감소됨을 확인하였다. 이는 이론적으로 예상 가능한 BER 성능 예측을 시뮬레이션 결과를 통해 확인하였다. 2.6GHz, 5GHz, 28GHz 각각의 주파수 대역에서 도플러 주파수에 의한 BER 특성과 제어기 함수에 의한 BER 특성을 확인하였으며, 무인 비행체의 이동시 발생하는 도플러 주파수는 제어기의 위치와 가까운 곳에서 통신 성능에 많은 영향을 미치는 것을 확인하였다.

단일 시점 축구 비디오의 3차원 영상 변환을 위한 깊이지도 생성 방법 (2D-to-3D Stereoscopic conversion: Depth estimation in monoscopic soccer videos)

  • 고재승;김영우;정용주;김창익
    • 방송공학회논문지
    • /
    • 제13권4호
    • /
    • pp.427-439
    • /
    • 2008
  • 본 논문에서는 일반 단일 시점의 축구 비디오를 스테레오스코픽 영상으로 변환하는 방법을 제안한다. 축구 비디오 분석 과정을 통하여 축구 비디오를 일정한 종류의 샷으로 분류하고, 분류된 샷 종류에 따른 깊이지도 생성 방법을 제안한다. 원거리 샷의 경우에는 운동장 영역 추출을 통하여 운동장 영역에 깊이기도 (Depth Map)을 생성하는 방법을 제안한다. 그리고 비 원거리 샷의 경우, 운동장 영역 블록 수와, 간단한 피부색 발견 알고리즘을 통해 생성한 스킨 블록의 수에 따라 다시 3가지로 샷을 분류하고, 각 종류의 샷에 따른 깊이지도 생성 방식 1) 오브젝트 영역 추출을 통한 깊이지도 생성, 2) 스킨 블록을 이용한 전경 영역 추출과 가우시안 함수를 이용한 깊이기도 생성, 그리고 3) 스킨블록이 없는 상황에서의 깊이기도 생성 방법을 제안한다. 제안한 방법을 통하여 생성한 깊이 지도를 이용하여, 스테레오스코픽 영상을 생성하는 방법을 소개하고, 생성한 실험영상을 결과로 제공한다. 그리고 주관적 깊이감 품질 평가를 통해서, 제안된 방법을 통해 생성된 영상이 원본 영상에 비해 깊이감이 향상됨을 증명한다.

명암도 응집성 강화 및 분류를 통한 3차원 뇌 영상 구조적 분할 (Structural Segmentation for 3-D Brain Image by Intensity Coherence Enhancement and Classification)

  • 김민정;이정민;김명희
    • 정보처리학회논문지A
    • /
    • 제13A권5호
    • /
    • pp.465-472
    • /
    • 2006
  • 최근 대용량 의료영상 데이터로부터 인체 기관 또는 질환 부위 추출을 위한 영상 분할 기법이 매우 다양하게 제안되고 있으나, 뇌와 같이 다중 구조를 가지면서 구조간 경계 구분이 어려운 영상의 구조적 분할에는 한계를 가진다. 이를 위해 주로 복셀을 유한 개의 군집으로 분류하는 군집화 (clustering) 기법이 이용되나 이는 개별 복셀 단위의 연산을 수행함으로 인해 잡음의 영향을 받는 제한점이 있다. 그러므로 잡음의 영상을 최소화하고 영상 경계를 강화시키는 향상기법을 적용함으로써 보다 견고한 구조적 분할을 수행할 수 있다. 본 연구에스는 뇌 자기공명영상에 대하여 백질(white matter), 회백질(gray matter), 뇌척수액(cerebrospinal fluid)의 내부 구조를 효율적으로 추출하기 위한 필터링 기반 군집화에 의한 구조적 분할 기법을 제안한다. 우선 구조간 경계를 강화하고 구조 내 잡음을 약화시키기 위해 응집성 향상 확산 필터링(coherence enhancing diffusiion filtering)을 적용한다. 또한 이 과정을 통해 강화된 영상에 퍼지 c-means 군집화 기법을 적용하여 각 복셀이 속하는 구조에 해당하는 군집의 인덱스를 할당함으로써 구조적 분할을 수행한다. 제안된 구조적 분할기법은 기존의 가우시안 또는 일반적인 비등방성 확산 필터링과 군집화 기법을 적용한 기법에 비해 전문가의 수동분할 결과와의 일치 비율에 의한 분할 정확도를 향상시킴을 보였다. 또한 경계 부분에 있어서의 세밀한 분할을 통해 재생산 가긍하고 사용자 수동후 처리를 최소화할 수 있는 결과를 제시함으로써 형태적 뇌 이상 진단을 위한 효율적인 보조 수단을 제공한다.

Watersheds 기반 계층적 이진화를 이용한 단백질 반점 분할 알고리즘 (The Algorithm of Protein Spots Segmentation using Watersheds-based Hierarchical Threshold)

  • 김영호;김정자;김대현;원용관
    • 정보처리학회논문지B
    • /
    • 제12B권3호
    • /
    • pp.239-246
    • /
    • 2005
  • 생물학자가 단백질을 검색하고 분석하기 위해서는 2차원 젤 전기영동(2DGE : Two Dimensional Gel Electrophoresis) 실험을 해야 한다. 실험 결과는 2차원 영상이 생성된다. 2차원 영상에서 단백질 반점의 패턴 분석을 위해 2차원 젤 영상에 펼쳐진 단백질 반점들을 영상처리를 통해 분할하고, 대조 그룹의 단백질 패턴과 비교분석을 통해 밝히고자하는 단백질 반점을 찾아내야 한다. 단백질 반점을 분할하는 알고리즘에 있어서 기존에는 가우시안 함수를 적용하였지만, 최근 들어 형태학 분리개념에 의한 Watersheds 영역기반 분할(Watersheds region-based segmentation) 알고리즘을 활용하고 있다. 그러나 Watersheds 영역기반 분할 알고리즘은 크기가 큰 영상에서 원하는 영역을 신속하게 분할한다는 장점이 있지만, 영상 화소의 그레이 값이 연속적인 경우 실제 반점의 개수 에 비해 과다분할(over-segmentation)되거나 과소분할(under-segmentation)의 문제점을 안고 있다. 이는 마커(marker) 포인트의 설정에 의해 어느 정도 해결할 수 있지만 병합(merge)과 분할(split) 과정을 반복해야 한다. 본 논문은 Watersheds 기반 계층적 이진화 기법을 적용하여 마커 드리븐 Watersheds 영상분할의 문제점을 해결하고자 한다.

노인 운전자의 공격적인 운전 상태 검출 기법 (A Method of Detecting the Aggressive Driving of Elderly Driver)

  • 고동우;강행봉
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권11호
    • /
    • pp.537-542
    • /
    • 2017
  • 공격적인 성향의 운전은 자동차 사고의 주요한 원인이 된다. 기존 연구에서는 공격적 성향의 운전을 검출하기 위해, 주로 청년을 대상으로 연구가 이뤄졌으며 기계학습의 순수한 Clustering 또는 Classification 기법을 통해 이뤄졌다. 그러나 노인들은 취약한 신체적 조건에 의해 젊은 운전자와는 다른 운전 강도를 가지고 있어 기존의 방식으로는 검출이 불가능 하며, 데이터를 보정하는 등의 새로운 방법이 필요하다. 그리하여, 본 연구에서는 기존의 클러스터링 기법(K-means, Expectation - maximization algorithm)에, 새롭게 제안하는 ECA(Enhanced Clustering method for Acceleration data)기법을 추가하여, 주행 차량에 위치한 스마트폰으로부터 수집된 가속도 데이터를 분석하고 공격적인 운전 형태를 검출해 낸다. ECA는 모든 피험자의 데이터에서 K-means와 EM을 통해 검출된 군집군의 데이터 중 높은 강도의 데이터를 선별하여, 특징을 스케일링한 값을 통해 모델링한다. 본 방식을 통해 기존의 연구의 순수한 클러스터링 방식과는 달리, 모든 청장년 및 노인 실험 참가자 개인들의 공격적인 운전 데이터가 검출되었으며, 클러스터링 기법간의 비교를 통해 K-means 기법이 보다 높은 검출 효율을 갖고 있음을 확인했다. 또한, K-means 방식을 검출한 공격적인 운전 데이터에서는 젊은 운전자가 노인운전자에 비해 1.29배의 높은 운전 강도를 가지고 있음을 발견했다. 이와 같이 본 연구에서 제안된 방식은 낮은 운전 강도를 갖고 있는 노인의 데이터에서 공격적인 운전을 검출 가능하게 되었으며, 특히. 제안된 방법은 노인 운전자를 위한 맞춤형 안전운전 시스템을 구축이 가능하며, 추후 다양한 연구을 통해 이상 운전 상태를 검출하고 조기 경보하는데 활용이 가능할 것이다.

퍼지 RBFNNs와 증분형 주성분 분석법으로 실현된 숫자 인식 시스템의 설계 (Design of Digit Recognition System Realized with the Aid of Fuzzy RBFNNs and Incremental-PCA)

  • 김봉연;오성권;김진율
    • 한국지능시스템학회논문지
    • /
    • 제26권1호
    • /
    • pp.56-63
    • /
    • 2016
  • 본 연구에서는 퍼지 RBFNNs과 증분형 주성분 분석법으로 실현된 숫자인식 시스템의 설계를 소개한다. 주성분 분석법은 차원축소를 위해 사용되는 알고리즘으로 학습데이터의 차원 수가 고차원이거나 데이터의 양이 많을 때 특징 추출을 위한 많은 계산 시간을 필요로 한다. 따라서 고차원 데이터의 효율적인 차원축소와 점진적인 학습을 위해 증분형 주성분분석법을 적용하는 방법을 제안한다. 방사형 기저함수 신경회로망의 구조는 조건부, 결론부, 추론부의 3가지 기능적 모듈로서 구분이 가능하다. 조건부에서는 FCM 클러스터링 알고리즘의 도움으로 실현된 퍼지 클러스터링의 사용으로 입력 공간을 분할한다. 또한 가우시안 함수 대신 FCM(Fuzzy C-Means)클러스터링 알고리즘의 멤버쉽 값을 사용함으로써 입력 데이터의 특성을 좀 더 잘 반영할 수 있도록 개선하였으며, 결론부에서 연결가중치는 상수항에서 일차식과 이차식, 그리고 변형된 이차식과 같은 다항식의 형태로 확장하여 사용한다. 실험 결과는 공인 숫자 데이터인 MNIST 필기체 숫자 데이터를 사용하여 제안된 숫자 인식 시스템의 효율성을 다른 연구와의 비교를 통해 입증한다.