• 제목/요약/키워드: 가우시안혼합모델

검색결과 144건 처리시간 0.033초

결정트리 기반 상태공유 모텔 최적화에 관한 연구 (A Study on Optimization of Decision Tree based State Tying Model)

  • 한명희;이호준;김순협
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 추계학술발표대회(상)
    • /
    • pp.17-20
    • /
    • 2003
  • 본 논문에서는 공유 모델링의 대표적인 방법인 결정트리 기반 상태공유 모델을 기반으로 하여 그 출력 확률 분포의 혼합 가우시안 수를 줄임으로써 모델을 최적화하고자 하였다. 결정트리 기반의 상태공유 모델링은 일반적인 방법을 따랐으며 혼합 가우시안 수를 늘려 인식률이 최대가 되는 지점에서 혼합 가우시안을 클러스터링하여 그 수를 줄였다. 클러스터링 시에 필요한 거리 측정 방법이나 가까운 두 가우시안의 합성 방법을 여러 기법을 실험하였다. 이때 인식률은 클러스터링 이전인 97.2%를 유지하였으며 총 혼합 가우시안의 감소율은 1.0%를 보임으로써 모델을 최적화할 수 있었다.

  • PDF

데이터 클러스터링을 위한 가우시안 혼합 모델을 이용할 퍼지 정보량 측정 (Gaussian Mixture Model for Data Clustering using Fuzzy Entropy Measures)

  • 임채주;최병인;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.335-338
    • /
    • 2004
  • 본 논문에서는 기존의 정보량(Entropy) 기반 클러스터링 기법을 향상시키기 위한 방법으로서 퍼지 정보량을 이용하였다 가우시안 혼합 모델을 이용하면, 프로토타입의 목적 함수를 이용하는 클러스터링 기법보다 향상된 결과를 얻을 수 있고, Parameter의 조정이 요구되지 않는다. 그러나, 가우시안 혼합 모델의 사용은 주어진 패턴 집합을 클러스터링하는데 계산량의 증가를 초래하게 된다. 본 논문에서는 가우시안 혼합 모델의 정형화에 요구되는 계산량을 감소시키는 방법을 제시한다 또한 퍼지정보량(Fuzzy Entropy)을 적용하여 기존의 정보량 기반의 클러스터링 결과와 비교 분석하였다.

  • PDF

혼잡한 환경에서 가우시안 혼합 모델을 이용한 계층적 객체 검출 (Layered Object Detection using Gaussian Mixture Learning for Complex Environment)

  • 이진형;김헌기;조성원;김재민
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.435-438
    • /
    • 2007
  • 움직이는 객체를 검출하기 위해서 정확한 배경을 사용하기 위해 널리 사용되는 방법으로는 가우시안 혼합 모델이다. 가우시안 혼합 모텔은 확률적 학습 방법을 사용하는데, 이 방법은 움직이는 배경일 경우와 이동하던 물체가 정지하는 경우 배경을 정확히 모델링하지 못한다. 본 논문에서는 확률적 모델링을 통해 혼잡한 배경을 모델링하고 객체의 계층적 처리를 통해 보다 정확한 배경으로 갱신할 수 있는 학습 방법을 제안한다.

  • PDF

가무시안 혼합모델에서 점진적 강인적응을 통한 화자확인 성능개선 (Performance Enhancement for Speaker Verification Using Incremental Robust Adaptation in GMM)

  • 김은영;서창우;임영환;전성채
    • 한국음향학회지
    • /
    • 제28권3호
    • /
    • pp.268-272
    • /
    • 2009
  • 본 논문에서는 화자확인을 위해서 가우시안혼합모델에 forgetting factor를 갖는 점진적 강인적응 방법을 제안하였다. 화자인식 시스템에서 적은 양의 데이터로 좋은 성능을 얻기 위하여 화자모델 적응방법이 사용되고 있다. 그러나, 현재 사용되고 있는 적응방법은 불규칙한 발성변화와 잡음 같은 이씨에 취약하고, 그것은 부정확한 화자모델을 만들 수 있다. 또한 시간이 지날수록 모델에 새로운 데이터가 적응되는 비율이 줄어들게 되는 문제점이 있다. 제안된 알고리즘은 가우시안혼합모델을 이용한 화자모델에서 이상치에 의한 왜곡과 새로운 데이터에 대한 적응 비율을 일정이상으로 유지할 수 있도록 하기 위하여 점진적 강인적응 방법을 제안하였다. 점진적 강인적응은 화자인식에서 적은 양의 데이터로 등록하고 테스트된 새로운 데이터로 모델을 적응시키는 방법이다. 실험결과는 7개월에 걸쳐서 수집된 데이터로부터 제안된 방법이 이상치에 강인하고 새로운 데이터의 적응 비율을 일정하게 유지시킴을 보였다.

가우시안 분포를 기반으로 한 얼굴 추적 (Gaussian Distribution-Based Face Tracking)

  • 박순영;송영섭;김항준
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (B)
    • /
    • pp.295-297
    • /
    • 2006
  • 본 논문에서는 연속 영상에서 가우시안 분포를 사용하여 사람의 얼굴을 추적하는 방법을 제안한다. 영상은 여러 개의 동질한 영역들로 이루어지고, 이 영역들 중 얼굴 영역이 있다고 가정하였다. 영상에 있는 모든 영역들을 가우시안 분포로 표현하였으며, 이들의 집합을 가우시안 분포의 혼합 모델로 표현하였다. 제안된 방범에서는 이전 프레임에서 가우시안 분포들을 찾고, 찾아진 이전 프레임의 가우시안 분포들을 이용하여 현재 프레임의 영역들을 찾는다. 이 영역들 중, 초기에 주어진 얼굴 영역이 있으며 현재 프레임의 영역들에 의해 가우시안 분포는 갱신되고 이 과정을 반복함으로써 얼굴을 추적한다. 가우시안 분포의 개수를 다양하게 변화시켜 실험을 하였고, 이를 통해 가우시안 분포의 혼합 모델로 얼굴을 추적할 수 있음을 보였다.

  • PDF

가우시안 혼합 모델을 이용한 네트워크 침입 탐지 시스템 (Network Intrusion Detection System Using Gaussian Mixture Models)

  • 박명언;김동국;노봉남
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (1)
    • /
    • pp.130-132
    • /
    • 2005
  • 초고속 네트워크의 폭발적인 확산과 함께 네트워크 침입 사례 또한 증가하고 있다. 이를 검출하기 위한 방안으로 침입 탐지 시스템에 대한 관심과 연구 또한 증가하고 있다. 네트워크 침입을 탐지위한 방법으로 기존의 알려진 공격을 찾는 오용 탐지와 비정상적인 행위를 탐지하는 방법이 존재한다. 본 논문에서는 이를 혼합한 하이브리드 형태의 새로운 침입 탐지 시스템을 제안한다. 기존의 혼합된 방식과는 다르게 네트워크 데이터의 모델링과 탐지를 위해 가우시안 혼합 모델을 사용한다. 가우시안 혼합 모델에 기반한 침입 탐지 시스템의 성능을 평가하기 위해 DARPA'99 데이터에 적용하여 실험하였다. 실험 결과 정상과 공격은 확연히 구분되는 결과를 나타내었으며, 공격 간의 분류도 상당 수 가능하였다.

  • PDF

혼잡한 환경에서 적응적 가우시안 혼합 모델을 이용한 계층적 객체 검출 (Layered Object Detection using Adaptive Gaussian Mixture Model in the Complex and Dynamic Environment)

  • 이진형;조성원;김재민;정선태
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.387-391
    • /
    • 2008
  • 움직이는 객체를 검출하기 위해서 정확한 배경을 사용하기 위해 널리 사용되는 방법으로는 가우시안 혼합 모델이다. 가우시안 혼합 모델은 확률적 학습 방법을 사용하는데, 이 방법은 움직이는 배경일 경우와 이동하던 물체가 정지하는 경우 배경을 정확히 모델링하지 못한다. 본 논문에서는 확률적 모델링을 통해 혼잡한 배경을 모델링하고 객체의 계층적 처리를 통해 보다 정확한 배경으로 갱신할 수 있는 학습 방법을 제안한다.

클러스터 확률 모형에 의한 지역화와 코풀라에 의한 가뭄빈도분석 (Regionalization using cluster probability model and copula based drought frequency analysis)

  • 무하마드 아잠;최현수;김형산;황주하;맹승진
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.46-46
    • /
    • 2017
  • 지역가뭄빈도분석의 분위산정에 대한 신뢰성은 수문학적으로 균일한 지역으로 구분하기 위해 사용된 장기간의 과거 자료와 분석절차에 의해 결정된다. 그러나 극심한 가뭄은 매우 드물게 발생하며 신뢰 할 수 있는 지역빈도분석을 위한 지속기간이 충분치 않는 경우가 많이 발생한다. 이 외에도 우리나라의 복잡한 지형적 및 기후적 특징은 동질한 지역으로 구분하기 위한 통계적인 처리방법이 필요하였다. 본 연구에서 적용한 지역빈도분석은 여러 지역의 다양한 변수인 수문기상 특성을 분석하여 동질한 지역을 확인하고, 주요 가뭄변수(지속 시간 및 심각도)를 통합 적용하여 각각의 동질한 지역 분위를 추정함으로써 동질한 지역을 구분하는 해결책을 제시하였다. 본 연구에서는 가우시안 혼합 모형(Gaussian Mixture Model)을 기반으로 기반 군집분석 방법을 적용하여 최적의 동질한 지역을 구분하고 그 결과를 우도비검정 및 다른 유효성 검사 지수를 이용해서 확인하였다. 가우시안 혼합 모델에서 산정했던 매개변수를 방향저감 공간으로 표현하기 위해서 가우시안 혼합 모델방향 저감(GMMDR)방법을 적용하였다. 이 변수는 가뭄빈도분석을 위해 다양한 분포와 코풀라(copula) 적합도를 이용하여 추정 비교하였다. 그 결과 우리나라를 4개의 동질한 지역으로 나누게 되었다. 가우시안과 Frank copula를 이용한 Pearson type III(PE3) 분포는 우리나라의 가뭄 기간과 심각도의 공동 분포를 추정하는데 적합한 것으로 나타났다.

  • PDF

가우시안 혼합모델과 수학적 형태학 처리를 이용한 터널 내에서의 차량 검출 (Vehicle Detection in Tunnel using Gaussian Mixture Model and Mathematical Morphological Processing)

  • 김현태;이근후;박장식;유윤식
    • 한국전자통신학회논문지
    • /
    • 제7권5호
    • /
    • pp.967-974
    • /
    • 2012
  • 본 논문에서는 가우시안 혼합모델과 수학적 형태학 처리를 통하여 터널 내에 설치된 고해상도 CCTV 카메라 영상에 대한 차량 검출 알고리즘을 제안한다. 먼저, CCTV 카메라로부터 입력되는 영상으로부터 가우시안 혼합모델을 이용하여 배경을 추정하고, 배경영상과 입력영상의 차영상으로부터 객체를 분리한다. 그 다음 단계로 분리된 후보 객체를 수학적 형태학 처리를 통하여 재구성한다. 최종적으로는 터널에서의 차량의 위치에 따른 크기 특징을 분석하여 차량을 검출한다. 터널에서 촬영한 영상을 이용한 시뮬레이션을 통하여 제안하는 차량 검출방법이 효과적으로 적용할 수 있음을 확인하였다.

영상 기반 항법을 위한 가우시안 혼합 모델 기반 파티클 필터 (Particle Filters using Gaussian Mixture Models for Vision-Based Navigation)

  • 홍경우;김성중;방효충;김진원;서일원;박장호
    • 한국항공우주학회지
    • /
    • 제47권4호
    • /
    • pp.274-282
    • /
    • 2019
  • 무인항공기의 영상 기반 항법은 널리 사용되는 GPS/INS 통합 항법 시스템의 취약점을 보강할 수 있는 중요한 기술로 이에 대한 연구가 활발히 이루어지고 있다. 하지만 일반적인 영상 대조 기법은 실제 항공기 비행 상황들을 적절하게 고려하기 힘들다는 단점이 있다. 따라서 본 논문에서는 영상기반 항법을 위한 가우시안 혼합 모델 기반의 파티클 필터를 제안한다. 제안한 파티클 필터는 영상과 데이터베이스를 가우시안 혼합 모델로 가정하여 둘 간의 유사도를 이용하여 항체의 위치를 추정한다. 또한 몬테카를로 시뮬레이션을 통해 위치 추정 성능을 확인한다.