• Title/Summary/Keyword: 가연성액체

Search Result 86, Processing Time 0.027 seconds

A Study on the Evaporation and Distribution Velocity a Volatile Mixtures (가연성 혼합액체의 증발 및 분포 속도에 관한 연구)

  • An, Hyung-Whan
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.6
    • /
    • pp.1-6
    • /
    • 2014
  • This study is based on a investigation regarding the evaporation rate of a volatile liquid(methanol, tetrahydrofuran, xylene) according to changes of the temperature and wind. The weight of a volatile liquid was standardized to 24 g and the mixture was formed with the same weight ratio. In order to discover about the effect of the wind velocity, small fan was installed at 10 cm above the entrance and 30 cm away in the direction of the cylinder. The effect of the wind velocity was tested at 0 m/s, 1.63 m/s, 2.03 m/s respectively and the effect of the temperature on the volatile liquid was experimented at the temperature of $21^{\circ}C$, $32^{\circ}C$, $52^{\circ}C$ in the constant temperature water base. As a result, in case of Xylene, the evaporation rate of the tetrahydrofuran and methanol showed 1.4 mg/min, 19.8 mg/min and 10.2 mg/min respectively. Also, the effect of the evaporation rate on the temperature of the volatile liquid and on the velocity of wind was shown to be very sensitive. At the same time, the evaporation rate of the mixture showed large difference compared to that of the single volatile liquid.

Estimation of the Lower Explosion Limits Using the Normal Boiling Points and the Flash Points for the Ester Compounds (에스테르화합물에 대한 표준끓는점과 인화점을 이용한 폭발하한계 추산)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.84-89
    • /
    • 2007
  • The lower explosion limit(LEL) is one of the major combustion properties used to determine the fire and explosion hazards of the combustible substances. In this study, the lower explosion limits of the ester compounds were predicted by using the normal boiling points and the flash points based on the liquid thermodynamic theory. As a results, the A.A.P.E.(average absolute percent error) and the A.A.D.(average absolute deviation) of the reported and the calculated the LEL for the ester are 8.80 vol% and 0.18 vol%, respectively and the coefficient of correlation was 0.965. From a given results, by the use of the proposed methodology, it is possible to predict the lower explosion limits of the other flammable materials.

A Study on Explosive Limits of Flammable Materials - Explosive Limits of Flammable Binary liquid Mixture by Liquid Phase Compositions - (가연성물질의 폭발한계에 관한 연구 - 액상 조성에 의한 가연성 2성분 액체혼합물의 폭발한계 -)

  • 하동명
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.103-108
    • /
    • 2001
  • Explosive limit is one of the major physical properties used to determine the fire and explosion hazards of the flammable substances. Explosive limits are used to classify flammable liquids according to their relative flammability. Such a classification is important for the safe handling of flammable liquids which constitute the solvent mixtures. Explosive limits of all compounds and solvent mixtures can be calculated with the appropriate use of the fundamental laws of Raoult, Dalton, Le Chatelier and activity coefficient models. In this paper, Raoult,s law and van Laar equation(activity coefficient model) are shown to be applicable for the prediction of the explosive limits in the flammable ethylacetate-toluene system. The values calculated by the proposed equations were a good agreement with literature data within a given percent. From a given results, by the use of the proposed equations, it is possible to predict explosive limits of the other flammable mixtures. It is hoped eventually that this method will permit the estimation of the explosive Properties of flammable mixtures with improved accuracy and the broader application for other flammable stances.

  • PDF

The Measurement of Autoignition Temperature for n-Propanol and Formic acid System (n-Propanol과 Formic acid계의 자연발화온도 측정)

  • Park, Sang-Hun;An, Jong-Il;Kim, Se-Ho;Park, Yoon-A;Choi, Jin-Young;Han, Jin-Seok;Oh, Su-Yong;Jang, Seon-Yeon;Ha, Dong-Myeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.164-164
    • /
    • 2013
  • 화학 관련 산업은 고온, 고압뿐만 아니라 반응성이 큰 물질들을 사용하는 복잡한 공정으로 이에 맞는 안전기술이 요구된다. 산업 현장에서 취급하고 있는 각종 화학물질의 안전관리를 어렵게 하는 이유는 취급하는 물질의 화재 및 폭발 특성치에 관한 자료가 부족하거나 정확하지 않은 연소 특성치를 사용하기 때문이다. 가연성물질의 연소현상 가운데 하나인 자연발화는 가연성 혼합기체에 열 등의 형태로 에너지가 주어졌을 때 스스로 타기 시작하는 산화현상으로, 주위로부터 충분한 에너지를 받아서 스스로 점화할 수 있는 최저온도를 최소자연발화온도(AIT : Auto ignition Temperature)라고 한다. 최소자연발화온도는 가연성 액체의 안전한 취급을 위해 중요한 지표가 된다. 순수물질의 최소자연발화온도를 문헌들에서 비교하면, 동일 물질인데도 불구하고 문헌에 따라 다른 최소자연발화온도가 제시되고 있다. 따라서 사업장에서 사고를 예방하기 위해서는 정확한 연소 특성 자료를 이용해야 해야 한다. 그러나 문헌에 제시된 대부분의 자료들은 과거 표준장치 및 자체 제작된 장치 등을 사용해서 얻은 결과이므로, 최근에 고안된 표준 장치를 이용한 결과가 매우 유용한 자료가 될 것으로 본다. 본 연구에서는 자연발화온도를 측정하는데 있어서 최근에 고안된 표준장치인 ASTM E659장치를 이용하여 n-Propanol과 Formic acid 혼합물의 최소자연발화 온도를 측정하였다. n-Propanol과 Formic acid 혼합물의 최소자연발화 온도는 화학 관련 산업 공정에서 매우 중요한 자료가 될 것이다.

  • PDF

Measurement and Prediction of Autoignition Temperature(AIT) of n-Decane+Ethylbenzene System (노말데칸과 에틸벤젠 계의 최소자연발화온도 측정 및 예측)

  • Lee, Jae-Hwa;Kim, Gui-Ju;Hong, Soon-Kang;Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.54-60
    • /
    • 2015
  • The autoignition temperature (AIT) of a material is the lowest temperature at which the material will spontaneously ignite. The AIT is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AITs of n-decane+ethylbenzene system by using ASTM E659 apparatus. The AITs of n-decane and ethylbenzene which constituted binary system were $210^{\circ}C$ and $430^{\circ}C$, respectively. The experimental AITs of n-decane+ethylbenzene mixture were a good agreement with the calculated AITs by the proposed equations with about $11^{\circ}C$ A.A.D.(average absolute deviation).

A Study on the Characteristics of Pool Fire (Pool 화재의 연소 특성에 관한 연구)

  • 오규형;나선종;이성은
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.39-44
    • /
    • 2004
  • This study is intended to understand flame behavior of the pool fire. Liquid fuels were acetone, methanol, hexane and heptane which are used in many industries. Diameter of vessel was varied from 50 mm to 400 mm and the vessel was made by stainless steel and copper. Combustion time, temperature of vessel wall and heat flux of flame were measured, and flame behavior was visualized with video camera. Based on the experiment, it was found that the burning velocity and flame height was increased according to increase of vessel diameter, and vortex shedding frequency was inverse proportion to vessel diameter. And the characteristics of pool fire were affected by physical and chemical properties of liquid fuel and the vessel materials.

The Measurement of Flash Point of Water-Methanol and Water-Ethanol Systems Using Seta Flash Closed Cup Tester (Seta Flash 밀폐식 장치를 이용한 Water-Methanol과 Water-Ethanol계의 인화점 측정)

  • Ha, Dong-Myeong;Park, Sang Hun;Lee, Sungjin
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.39-43
    • /
    • 2015
  • The flash point is the major property to characterize fire and explosion hazard of liquid mixtures. The flash point is the lowest temperature at which a liquid gives off enough vapor to form a flammable air-vapor mixture. The flash points of two aqueous mixtures, water-methanol and water-ethanol, were measured using Seta flash closed cup tester. A prediction method based on activity coefficient models, Wilson and UNIQUAC equations, was used to calculate the flash point. The calculated flash points were compared to the results by the calculating method using Raoult's law. The calculated values based on activity coefficients models were found to be better than those based on the Raoult's law.

Measurement of Lower Flash Point for Ternary Mixture, n-Nonane+n-Decane+n-Dodecane System (삼성분계 혼합물인 n-Nonane+n-Decane+n-Dodecane 계의 하부인화점 측정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.31-36
    • /
    • 2016
  • The flash point is one of the most important indicators of the flammability of liquid solutions. The flash point is the lowest temperature at which there is enough concentration of flammable vapor to form an ignitable mixture with air. In this study the flash points of ternary liquid solutions, n-nonane+n-decane+n-dodecane system, were measured using Seta flash closed cup tester. The measured values were compared with the calculated values using Raoult's law and empirical equation. The calculated data by empirical equation described the measured values more effectively than those calculated by Raoult's law.

Experimental Study on Ignition and Explosion Hazard by Measuring the Amount of Non-volatile (NVR) and Explosion Limit of Biodiesel Mixture (바이오디젤 혼합물의 가열잔분측정과 폭발한계 측정을 통한 발화 및 폭발위험성에 대한 실험적인 연구)

  • Kim, Ju Suk;Koh, Jae-Sun
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.182-193
    • /
    • 2022
  • Purpose: By measuring and evaluating the risk of biodiesel through non-volatile residue (NVR) and flash point and explosion limit measurement at a specific temperature according to ASTM test standards, the risk of chemical fire causative substances is identified and a universal evaluation method By derivation and securing the risk-related data of the material, it can be used for the identification and analysis of the cause of the fire, and it can be applied to the risk assessment of other chemical substances Method: In order to measure the risk of biodiesel, it was measured using the non-volatile residue(NVR) measurement method, which measures how much flammable liquid is generated at a specific temperature. Heating was tested by applying KS M 5000: 2009 Test Method 4111. In addition, the flash point was measured using the method specified in ASTM E659-782005, and the energy supply method was measured using the constant temperature method. In addition, the explosion limit measurement was conducted in accordance with ASTM E 681-04 「Standard test method for concentration limits of flammability of chemicals(Vapors and gases)」 test standard. Result: As a result of checking the amount of combustible liquid by the non-volatile residue (NVR)measurement method, the non-volatile residue(NVR) of general diesel when left at 105±2℃ for 3 hours was about 30% (70% of volatile matter) and about 4% of biodiesel. In addition, similar results were obtained for the non-volatile residue(NVR)heating temperature of 150±2℃, 3 hours and 200±2℃ for 1 hour, and white smoke was generated at 200℃ or higher. In addition, similar values were obtained as a result of experimentally checking the explosion (combustion) limits of general diesel, general diesel containing 20% biodiesel, and 100% biodiesel. Therefore, it was confirmed that the flammability risk did not significantly affect the explosion risk. Conclusion: The results of this study suggested the risk judgment criteria for mixtures through experimental research on flammable mixtures for the purpose of securing the effectiveness, reliability, and reproducibility of the details of the criteria for determining dangerous substances in the existing Dangerous Materials Safety Management Act. It will be possible to provide reference data for the judgment criteria for flammable liquids that are regulated in the field. In addition, if the know-how for each test method is accumulated through this study, it is expected that it will be used as basic data in the research on risk assessment of dangerous substances and as a basis for research on the determination of dangerous substances.

1-Ethyl-1-Methyl Piperidinium Bis(Trifluoromethanesulfonyl)Imide as a Co-Solvent for Li-ion Battery Electrodes (혼합 용매로서의 1-Ethyl-1-Methyl Piperidinium Bis(Trifluoromethanesulfonyl)Imide의 리튬 이차 전지용 전극별 거동)

  • Koh, Ah Reum;Kim, Ketack
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.103-110
    • /
    • 2014
  • In the study, a room temperature ionic liquids as a co-solvent was used to evaluate the feasibility with various electrodes in Li-ion batteries. 1-Ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl) imide(PP12 TFSI) is an ionic liquid that melts at $85^{\circ}C$. Pure PP12 TFSI is not able to be used as an electrolyte because it is a solid salt at room temperature. PP12 TFSI is mixed with EC/DEC(1/1 vol.%) to prepare mixed solvents. The electrolyte 1.5M $LiPF_6$ in a mixed solvent having 44 wt.% PP12 TFSI is prepared to evaluated the various electrodes. The electrolytes provides good cycles life of cells with $LiNi_{0.5}Mn_{1.5}O_4(LNMO)$, $LiFePO_4(LFP)$, $Li_4Ti_5O_{12}(LTO)$ and artificial graphite. Further improvement of the cell performances can be accomplished by enhancing wettability of electrolytes to electrodes.