• Title/Summary/Keyword: 가압용침법

Search Result 5, Processing Time 0.018 seconds

금속복합 재료의 제조 및 응용

  • 한경섭;김영한
    • Journal of the KSME
    • /
    • v.32 no.1
    • /
    • pp.46-56
    • /
    • 1992
  • 이 글에서는 현재까지 개발된 금속복합재료의 제조공법 중에서 비교적 보편화되어 있는 분말야 금법, 가압용침법, 복합주조법 등에 대하여 소개하였고, 제조된 재료가 가지는 일반적인 기계적 성질에 대하여 설명하였다. 그리고 금속복합재료의 대표적인 응용분야와 현재 국내에서도 큰 관심을 끌고 있는 자동차엔진의 부품소재로서 금속복합재료의 응용기술에 대해 소개하였다. 국 내에서 금속복합재료의 관련 연구는 주로 학교와 연구소를 중심으로 발전되어 왔으나 근년에 자동차 산업의 비약적인 발전과 항공산업 분야에서 잠재적인 수요가 예측되면서 일부 기업체에서 응용 연구를 시작하였다. 그러나 금속복합재료의 기초 소재가 되는 경합금과 보강재의 제도기 술은 선진국에 비해 크게 뒤져 있다. 현재까지 국내에서의 연구동향은 주로 금속복합재료의 제조공정개발과 물성 평가에 치중하여 왔다. 기계공업이 발전하면서 점점 더 고기능성 소재가 요구되어지는 현황을 감안할 때 금속복합재료의 실질적 응용분야의 개척과 함께 기초 소재의 개발 연구는 시급한 과제이다.

  • PDF

Wear Characterization of $Al/Al_2O_3$ Composites Reinforced with Hybrid of Carbon Fibers and SiC Whiskers (탄소섬유와 SiC 휘스커를 혼합한 $Al/Al_2O_3$ 복합재료의 마멸특성)

  • 봉하동;송정일;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1619-1629
    • /
    • 1995
  • The Al/Al$_{2}$O$_{3}$ SiC and Al/Al$_{2}$O$_{3}$/C hybrid metal matrix composites (MMCs) were fabricated by squeeze infiltration method. Uniform distribution of reinforcements were found in the microstructure of metal matrix composites. Mechanical tests were carried out under various test conditions to clearly identify mechanical behavior of MMCs, and the wear mechanism of Al/Al$_{2}$O$_{3}$/(SiC or C) hybrid metal matrix composites were investigated. The tensile strength and hardness of hybrid composites was resulted in increasing compared with those of the unreinforced matrix alloy. Wear resistance was strongly dependent upon kinds of fiber, volume fraction and sliding speed. The wear resistance of metal matrix composites was remarkably improved by the addition of reinforcements. Especially, the wear resistance of the hybrid composites of carbon fibers was more effective than in the composites reinforced with alumina and SiC whiskers of reinforcements. This was due to the effect of carbon fiber on the solid lubrication. Wear mechanisms of hybrid composites were suggested from wear surface analyses. The major wear mechanism of hybrid composites was the abrasive wear at low to intermediate sliding speed, and the melting wear at intermediate to high sliding speed.

Mechanical Properties and Solid Lubricant Wear Behavior of MMCs Reinforced with a Hybrid of $Al_{2}O_{3}$ and Carbon Short Fibers (알루미나와 탄소단섬유를 혼합한 금속복합재료의 기계적 성질과 고체윤활 마모거동)

  • 송정일;봉하동;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.968-980
    • /
    • 1995
  • Al/Al$_{2}$O$_{3}$/C hybrid metal matrix composites are fabricated by the direct squeeze infiltration method. From the microstructure of Al/Al$_{2}$O$_{3}$/C composites, uniform distribution of reinforcements and good bondings are found. Optimum processing conditions for preforms and squeeze castings are suggested. Mechanical properties, such as elastic modulus, elongation, 0.2% offset yield strength and ultimate tensile strength are obtained. Through the abrasive were test and wear surface analsis, wear behavior and its mechanism of AC2B aluminum and Al/Al$_{2}$O$_{3}$/C composites can be characterized under various sliding speed conditions. Tensile strenght elongation of Al/Al$_{2}$O$_{3}$/C composites are decreased with increasing the addition of carbon fiber. On the contrary, elastic modulus of Al/Al$_{2}$O$_{3}$/C composites is slightly improved compared with that of the unreinforced matrix alloy. The addition of carbon fiber to al/al$_{2}$O$_{3}$/C composites gives rise to improvement of the wear resistance. Specially, carbon chopped fibers play an important role in interfering sticking between the counter material and metal matirix composites. Al/Al$_{2}$O$_{3}$/C composites are suitable to high speed due to solid lubication of carbon. And wear model of Al/Al$_{2}$O$_{3}$/C composites is suggested by the examination of worn surfaces.

Fatigue and Cyclic Deformation Behavior with the Unreinforced Matrix Alloy and Al/$Al_2O_3$ Metal Matrix Composites (기지금속과 $Al_2O_3$/Al 금속복합재료의 피로 및 주기적 변형거동)

  • 송정일
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.1-11
    • /
    • 1999
  • Cyclic deformation and fatigue behavior of $Al/$Al_2O_3$ metal matrix composites and matrix alloy were studied. Hatigue strength Al/$Al_2O_3$ composites was about 210MPa, and that of Al matrix alloy was 170MPa. Most of the resultant displacement due to permanent plastic deformation occurred in less than the first 5% of fatigue life. In case of composites, decrease of cyclic displacement was smaller than that of matrix because the reinforcements acted as barriers to dislocation movement. Consequently, cyclic stress-displacement response curve can be considered to have these atages ; an initial few cycles of rapid hardening, followed by progressive hardening for most the fatigue life, and then just prior to failure, an instantaneous drop in stress carrying capability of the material due to multiple microcrack initiation, eventual coalescence of microcrack to form a macrocrack and then rapid macroscopic crack growth.

  • PDF

Mechanical Properties and Wear Behaviour of $Al/SiC/Al_{2}O_{3}$ Composite Materials ($Al/SiC/Al_{2}O_{3}$복합재료의 기계적 성질 및 마멸특성)

  • 임흥준;김영한;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2498-2508
    • /
    • 1993
  • $Al/SiC/Al_{2}O_{3}$ hybrid composites are fabricated by squeeze infiltration method. From the misconstructive of $Al/SiC/Al_{2}O_{3}$ hybrid composites fabricated by squeeze infiltration method, uniform distribution of reinforcements and good bondings are found. Hardness value of $Al/SiC/Al_{2}O_{3}$ hybrid composites increases linearly with the volume fraction of reinforcement because SiC whisker and $Al_{2}$O$_{3}$ fiber have an outstanding hardness. Optimal aging conditions are obtained by examining the hardness of $Al/SiC/Al_{2}O_{3}$ hybrid composites with different aging time. Tensile properties such as Young's modulus and ultimate tensile strength are improved up to 30% and 40% by the addition of reinforcements, respectively. Failure mode of $Al/SiC/Al_{2}O_{3}$ hybrid composites is ductile on microstructural level. Through the abrasive wear test and wear surface analysis, wear behaviour and mechanism of 6061 aluminum and $Al/SiC/Al_{2}O_{3}$ hybrid composites are characterized under various testing conditions. The addition of SiC whisker to $Al/SiC/Al_{2}O_{3}$ composites gives rise to improvement of the wear resistance. The wear resistance of $Al/SiC/Al_{2}O_{3}$ hybrid composites is superior to that of Al/SiC composites. The wear mechanism of aluminum alloy is mainly abrasive wear at low speed range and adhesive and melt wear at high speed range. In contrast, that of $Al/SiC/Al_{2}O_{3}$ hybrid composites is abrasive wear at all speed range, but severe wear when counter material is stainless steel. As the testing temperature increases, wear loss of aluminum alloy decreases because the matrix is getting more ductile, but that of $Al/SiC/Al_{2}O_{3}$ hybrid composites is hardly varied. Oil lubricant is more effective to reduce the wear loss of aluminum alloy and $Al/SiC/Al_{2}O_{3}$ hybrid composites at high speed range.