Ryu Byong Jae;Don Sun woo;Chang Sung Hyong;Oh Jin yong
The Korean Journal of Petroleum Geology
/
v.7
no.1_2
s.8
/
pp.1-6
/
1999
Natural gas hydrate, a solid compound of natural gas (mainly methane) and water in the low temperature and high pressure, is widely distributed in permafrost region and deep sea sediments. Gas hydrate stability field (GHSF), which corresponds to the conditions of a stable existence of solid gas hydrate without dissociation, depends on temperature, pressure, and composition of gas and interstitial water. Gas hydrate-saturated sediment are easily recognized by the bottom simulating reflector (BSR), a strong-amplitude sea bottom-mimic reflector in seismic profiles. It is known that BSR is associated with the basal boundary of the GHSF, The purpose of this study is to define the GHSF and its occurrence in the southwestern part of Ulleung Basin, East Sea. The hydrothermal gradient is measured using the expandable bathythermograph (XBT) and the geothermal gradient data are utilized from previous drilling results for the adjacent area. By the laboratory work using methane and NaCl $3.0 wt{\%}$ solution, it is shown that the equilibrium pressures of the gas hydrate reach to 2,920.2 kPa at 274.15 K and to 18,090 kPa at 289.95 K for the study area. Consequently, it is interpreted that the lower boundary of the GHSF is about 210 m beneath 400-m-deep sea bottom and about 480 m beneath 1,100-m-deep sea bottom. The resultant boundary is well matched with the depth of the BSR obtained from the seismic data analysis for the study area.
저분자량의 가스와 물이 물리적 결합으로 이루어진 가스 하이드레이트는 상대적으로 많은 양의 가스가 포집될 수 있다는 특성을 이용하여 다양한 분야에서 활발한 연구가 진행되고 있다. 본 연구에서는 매립지에서 발생되는 매립가스를 하이드레이트의 원리를 이용하여 효율적으로 저장 및 수송하기위한 공정에 적용하기위해 필요한 매립지 가스 하이드레이트의 상평형에 대한 특성을 분석하고자한다. 일반적으로 매립지 가스에는 메탄이 약 50%, 이산화탄소가 약 35%, 질소가 약 6% 포함되어 있으며 그 밖에 산소, 수분, 암모니아 황화수소 메르캅탄 등 할로겐 계통을 포함한 탄화수소계화합물 수십여종이 포함되어 있다. 이러한 매립지가스를 하이드레이트화 하기위해서는 매립지가스에 포함된 다양한 성분들이 하이드레이트 형성에 미치는 영향을 알아볼 필요가 있다. 특히 황화수소의 경우 독성이 있으며, 실제 플랜트에서 장비의 부식등 악영향을 미치므로 이와 관련한 기초 연구가 필요하다. 따라서 본 연구에서는 메탄, 이산화탄소, 황화수소가 각각 49.9%, 50.05%, 500ppm의 조성으로 이루어진 혼합가스를 이용하여 하이드레이트 생성 및 해리 시 거동을 측정하고 그 상평형 영역을 기존데이터와 비교분석 하였다. 25bar, 36bar에서 측정한 상평형 데이터는 한국해양대학교 에서 측정한 결과와 마찬가지로 실제 상평형 영역이 CSMHYD 프로그램으로 예측한 것보다 하이드레이트의 안정영역이 약 2bar 정도 높게 형성되는 것을 확인하였으며, $CH_4+CO_2+H_2S$ 혼합가스 하이드레이트의 생성 시 mol consumption은 $CH_4+CO_2$ 혼합가스 하이드레이트와 유사하게 나타났다. 이 결과로 유추하건대, 황화수소의 첨가는 하이드레이트의 형성 압력을 높이지만, 하이드레이트 형성률에는 크게 영향을 미치지 않는다고 할 수 있다.
As this paper is observed the phase equilibrium diagram of mono- (methane) and multi-component(natural gas) hydrates, and the hydrate growth behavior is analysed and compared by the experiments during the reaction. The difference of mono and multi-component hydrates is an induction delay time and a plateau region. And the concentration of component of gases is changed during the reaction in multi-component hydrates and the concentration of components is changed during the decomposition of hydrate according to each decomposing rates of gases. At 6 MPa, 276.65 K and 600 rpm, the induction delay time of multi-component hydrate formation is observed shorter than that of mono-component hydrate formation because the hydrate nuclei of gases except methane form faster than those of methane. And the plateau region of mono-component hydrate is observed distinctly at 0.055 mole of $CH_4$/mole of water and that of multi-component hydrate is observed at 0.04 mole of $CH_4$/mole of water.
Lee, Jong-Won;Lu, Hailong;Moudrakovski, Igor L.;Ratcliffe, Christopher I.;Ripmeester, John A.
한국신재생에너지학회:학술대회논문집
/
2010.06a
/
pp.215.1-215.1
/
2010
가스 하이드레이트는 작은 고체 부피 내에 막대한 양의 가스를 저장할 수 있다는 특성으로 인하여, 최근 천연가스 혹은 메탄의 저장 매체로 활용하기 위한 연구가 활발히 진행중에 있다. 하지만 실제 응용을 위해서는 미세구조 분석이 수행되어 하이드레이트 형태로 저장할 수 있는 정확한 저장 용량을 파악할 필요가 있다. 본 연구에서는 여러가지의 고리형 에테르, 고리형 에스테르 및 고리형 케톤 화합물들을 테스트하여 메탄 가스와 반응하는 6가지의 새로운 sII 혹은 sH 하이드레이트 형성제를 파악하였다. 또한 새로이 발견된 형성제 모두에 대하여 하이드레이트 상평형도 측정하였다. 얻어진 상평형 데이터는 하이드레이트 안정영역과 게스트 분자 크기 간에 뚜렷한 상관관계가 있음을 입증하였다. 아울러 형성된 하이드레이트 샘플은 고체 분말 X-선 회절과 고체상 13C NMR 분석을 수행하여 하이드레이트 구조와 게스트 포집률을 조사하였다. 마지막으로, 비슷한 화학 구조식을 갖고 있음에도 2-methyltetrahydrofuran과 3-methyltetrahydrofuran, 혹은 4-methyl-1,3-dioxane과 4-methyl-1,3-dioxolane은 서로 다른 하이드레이트 결정 구조를 보여 주었는데, 이러한 차이는 하이드레이트 결정 구조를 결정짓는 게스트 분자 크기, 즉 임계 게스트 분자 크기를 파악하는 데에도 매우 유용한 정보를 제공할 수 있을 것이라 판단된다.
저온 고압의 환경에서 안정한 하이드레이트 함유 퇴적물 연구를 위하여 현장의 압력을 유지하여 코어를 회수할 수 있는 압력 코어러 (Pressure Corer)가 개발된 이후로 다양한 방법으로 압력코어를 이용한 연구가 진행되어 왔다. 하이드레이트의 안정영역 특성상 일반 코어러 샘플에서는 하이드레이트 함유 퇴적물의 회수가 용이하지 않았던 이유로 압력코어샘플응 이용한 현장 하이드레이트 함유 퇴적물의 연구는 필수적이다. 초기 단계에서는 압력코어를 이용한 비파괴 검사와 단순 감압 시험이 이루어졌다. 비파괴 검사를 통하여서는 X-ray 단면, 감마 밀도 (gamma density), 음파 속도 등이 측정 되었으며 감암 시험을 통하여서는 시료 내 하이드레이트 함유량을 산정하였다. 감압 후 다양한 지화학 분석이 후행되었다. 가스 하이드레이트 함유 퇴적물의 물성과 생산 거동이 점차 부각됨에 따라 압력코어 시료를 순간 감압하여 액체 질소에 보관하였다가 압밀시험, 삼축 압축 시험 등 물성 시험이 수행되었으며 수행 동안 X-ray 단면, 비저항, 음파 속도 등의 물성측정이 이루어졌다. 또한 액체 질소 보관 시료를 이용하여 감압법, 열염수 주입법, 열자극 법 등을 적용하여 생산 실험을 수행하기도 하였다. 이후에 압력코어 시료 절단 및 이동 시스템이 개발됨에 따라 보다 다양하고 많은 연구자 들이 압력코어 시료를 이용할 수 있게 되었으며 물성 연구뿐만 아니라 미생물 연구에 까지 압력코어 시료가 사용되게 되었다. 최근에는 절단 시료를 이용한 생산 실험 연구 또한 진행되었다.
Lee, Jong-Won;Lu, Hailong;Moudrakovski, Igor L.;Ratcliffe, Christopher I.;Ripmeester, John A.
한국신재생에너지학회:학술대회논문집
/
2008.05a
/
pp.580-583
/
2008
다양한 고리형 에스테르 및 고리형 케톤 화합물을 시도하여 새로운 구조-II 및 구조-H 수용성 하이드레이트 형성체를 발견하였다. 이렇게 새로이 발견된 하이드레이트 형성체에 대해서는 상평형 측정 및 분광학적 분석을 수행하여 안정영역과 분자 거동을 파악하였다. 새로이 발견된 하이드레이트 형성체는 물과의 용해성이 우수하여 하이드레이트 형성이 빠른 속도로 이루어져 실제 응용 분야에서 중요하게 사용될 수 있을 것으로 전망된다.
Submarine mud volcanos are topographic features that resemble volcanoes, and are formed due to eruptions of fluidized or gasified sediment material. They have gained attention as a source of subsurface heat, sediment, or hydrocarbons supplied to the surface. In the continental slope of the Canadian Beaufort Sea, mud volcano exists at various water depths. The MV420, is an active mud volcano erupting at a water depth of 420 meters, and it has been the subject of extensive study. The Korea Polar Research Institute(KOPRI) collected high-resolution seismic data and heat flow data around the caldera of the mud volcano. By analyzing the multi-channel seismic data, we confirmed the reverse-polarity reflector assumed by a gas hydrate-related bottom simulating reflector(BSR). To further elucidate the relationship between the BSR and gas hydrates, as well as the thermal structure of the mud volcano, a numerical geothermal model was developed based on the steady-state heat equation. Using this model, we estimated the base of the gas hydrate stability zone and found that the BSR depth estimated by multi-channel seismic data and the bottom of the gas hydrate stability zone were in good agreement., This suggests the presence of gas hydrates, and it was determined that the depth of the gas hydrate was likely up to 50 m, depending on the distance from the mud conduit. Thus, this depth estimate slightly differs from previous studies.
Kim, Kyoung Jin;Yi, Bo Yeon;Kang, Nyeon Keon;Yoo, Dong Geun;Shin, Kook Sun;Cho, Young Ho
Geophysics and Geophysical Exploration
/
v.17
no.4
/
pp.216-230
/
2014
Based on the interpretation of 3D seismic profiles acquired in the northwestern area of the Ulleung Basin, East Sea, the shallow sediments consist of five seismic units separated by regional reflectors. An anticline is present in the study area that documents activity of many faults. Bottom simulating reflectors are characterized by high RMS amplitude. Acoustic blanking with low RMS amplitude is distinctively recognized in the gas hydrate stability zone. Seismic attribute analysis shows that if gas hydrates are underlain by free gas, the high reflection strength and the low instantaneous frequency are displayed below the boundary between them. Whereas, if not, the reflection strength is low and instantaneous frequency is high continuously below the gas hydrate zone. Based on the spectral decomposition of the bottom simulating reflector, the high envelope at the specific high frequency range indicates the generation of the tuning effect due to the lower free gas content. Four models for the occurrence of the gas hydrate are suggested considering the slope of sedimentary layers as well as the presence of gas hydrate or free gas.
As the sea connecting with the East Sea, the Sea of Okhotsk is the most potential area of gas hydrates in the world. In other to examine geophysical structures of gas hydrate-bearing sediments in the Sea of Okhotsk, the CHAOS (hydro-Carbon Hydrate Accumulation in the Okhotsk) international research expedition was carried out in August 2003. In the expedition, high-resolution seismic and geochemical survey was also conducted. Sparker seismic profiles show only diffusive high-amplitude reflections without BSRs at BSR depth. It means that BSR appears to be completely different images on seismic profiles obtained using different frequencies. Many gas chimneys rise up from BSR depth to seafloor. The chimneys can be divided into two groups with different seismic characteristics; wipe-out (WO) and enhanced reflection (ER) chimneys. Different seismic responses in the chimneys would be caused by amount of gas and gas hydrates filling in the chimneys. In hydroacoustic data, a lot of gas flares rise up several hundreds meters from seafloor to the water column. All flares took placed at the depths within gas hydrate stability zone. It is interpreted that gas hydrate-bearing sediments with low porosity and permeability due to gas hydrate filling in the pore space make good pipe around gas chimneys in which gas is migrating up without loss of amount. Therefore, large-scale gas flare at the site on gas chimney releases into the water column.
The sea layer in marine Controlled-Source Electromagnetic (mCSEM) survey changes the conventional definition of apparent resistivity which is used in the land CSEM survey. Thus, the development of a new algorithm, which computes apparent resistivity for mCSEM survey, can be an initiative of mCSEM data interpretation. First, we compared and analyzed electromagnetic responses of the 1D stratified gas hydrate model and the half-space model below the sea layer. Amplitude and phase components showed proper results for computing apparent resistivity than real and imaginary components. Next, the amplitude component is more sensitive to the subsurface resistivity than the phase component in far offset range and vice versa. We suggested the induction number as a selection criteria of amplitude or phase component to calculate apparent resistivity. Based on our study, we have developed a numerical algorithm, which computes appropriate apparent resistivity corresponding to measured mCSEM data using grid search method. In addition, we verified the validity of the developed algorithm by applying it to the stratified gas hydrate models with various model parameters. Finally, by constructing apparent resistivity pseudo-section from the mCSEM responses with 2D numerical models simulating gas hydrate deposits in the Ulleung Basin, we confirmed that the apparent resistivity can provide the information on the geometric distribution of the gas hydrate deposit.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.