• Title/Summary/Keyword: 가스켓 비드

Search Result 4, Processing Time 0.019 seconds

Development of mechanical produce systems for Grooved Metal Gasket (Grooved Metal Gasket제작 전용기계시스템 개발)

  • Kang, Sung-Jun;Yun, Jae-Yeong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.821-823
    • /
    • 2011
  • 본 논문에서는 초고온/고압의 환경에서 사용되는 메탈 구루부드 가스켓의 품질 및 생산성 향상 그리고 원가절감을 목표로 Gasket제작 전용기계시스템을 개발하여 제작기술혁신을 하고자 하였으며, 전용기계시스템의 구성은 그루부 가공전용기, 벤딩 전용기, 후열처리 전용기, 용접비드 황삭전용기, 용접비드 연삭전용기로 이루어져 있다.

  • PDF

Effects of the Bead Shape on the Nonlinear Behavior of Cylinder Head Gasket (비드 형상에 따른 실린더 헤드 가스켓의 비선형 거동 특성)

  • Byun, Chul-Jin;Yoo, Seung-Hyun;Yoon, Cheon-Han;Park, Jong-Kuk
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.321-325
    • /
    • 2000
  • Gasket of vehicle engine maintains airtight between cylinder head and engine block under high temperature and pressure, and plays important role in heat conduction of engine. And the characterization of the nonlinear behavior of metal gasket fer various bead shapes is very important as basic research for estimation of gasket durability. But it is very difficult to analyze the behavior of gasket In real experiment. In this paper, to analysis effects of the bead shape on the nonlinear behavior of cylinder head gasket under uniform pressure, the virtual experiment using the nonlinear finite element method was performed. Results are analyzed with residual deformation and the sealing pressure. With the increase of the height and the width of bead, the residual deformation and the sealing pressure increase. And if the height is very high and the width is very narrow, the wrinkles are occurred in the gasket while working.

  • PDF

A Study on the Effects of the Design Parameters and Sealing Mechanism of the Exhaust Gas in Engine Exhaust System (엔진 배기계의 배기가스 누설 메카니즘과 설계인자들의 영향에 관한 연구)

  • Choi, B.L.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.37-42
    • /
    • 2010
  • This paper deals with the sealing mechanism of the gasket component and the effects of design parameters for the exhaust manifold. The finite element model includes hot-end exhaust system and a simplified gasket model supplied by ABAQUS software. The mechanical behaviors of bead and body of a gasket are measured after several times of cyclic loads by gasket supplier. From the finite element analysis due to the cyclic thermal loads, the flange of exhaust manifold shows thermal expansion and contraction in longitudinal direction as well as convex and concave deformations with respect to the engine cylinder head. And, the contact pressures of the gasket beads suddenly changes by normal deformation of inlet flanges. Therefore, the magnitudes of contact pressures could be used to determine the sealing characteristics of the exhaust gas in the exhaust system. The distributions of contact pressures in gasket bead lines shows a good agreement with the engine test results.

Leakage Analysis of the Exhaust Gas for the Engine Exhaust Manifold (엔진 배기매니폴드의 배기가스 누설 해석)

  • Choi, Bok-Lok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.160-165
    • /
    • 2007
  • Exhaust manifold is generally subjected to thermal cycle loadings ; at hot condition, large compressive plastic deformations are generated, and at cold condition, tensile stresses are remained in highly deformed critical zones. These phenomena originate from that thermal expansions of the runners are restricted by inlet flange connected to the cylinder head, because the former is less stiff than the latter and, the temperature of the inlet flange is lower than that of the runners. Therefore, due to the repetitions of thermal deformation, leakage problems could be occur between inlet flange and cylinder head. In this study, we obtained pressure distributions along gasket bead lines from the finite element analysis and compared to the test results. It shows a good agreement between numerical and experimental results.