• Title/Summary/Keyword: 가스엔진발전

Search Result 164, Processing Time 0.029 seconds

Development of BLDC motor Controller for VVA Module of Gasoline Vehicle (가솔린 차량용 가변 밸브 BLDC 모터 제어기 개발)

  • Park, Joon Sung;Choi, Jun-Hyuk;Gu, Bon-Gwan;Kim, Jin-Hong;Jung, In-Soung
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.586-587
    • /
    • 2012
  • 자동차 산업에 있어서 반도체 기술발전과 더불어 차량 내 기능들이 효율성, 경제성 및 친환경적인 관심을 고려하여 기계식 방식에서 전력전자식 방식으로 대체되고 있는 실정이다. 엔진의 연비를 향상시키기 위해서는 엔진의 연소효율을 개선하거나, 엔진에서 발생되는 손실을 줄이는 것이 필요한데, VVA(Variable Valve Actuation, 가변 밸브 작동) 기술은 엔진 흡기 유동 강화, 펌핑 손실 저감, 기계적 마찰 손실 저감등을 통해 엔진의 연비를 향상시킬 수 있다. 또한 VVA 엔진을 장착한 차량은 차량의 발진 응답성이 향상되고, 배기가스 배출량을 줄일 수 있어 친환경 저연비 차량을 실현하는데 핵심 차량부품기술이다. 최근까지 차량의 전동기 구동의 경우 DC모터 방식이 많이 적용되어 왔으나 DC모터의 내구성 및 효율 등의 이유로 BLDC모터로 바뀌고 있는 추세이다. 본 논문에서는 이와 같은 VVA 기구의 적용을 위하여 BLDC모터 제어기를 개발하였다.

  • PDF

Integrated Building Energy Supply System : An Overview of Technical Trends for Gas Engine Driven Combined Heat and Power System (가스엔진 구동 건물에너지 통합 공급시스템 개발을 위한 기술동향 사례연구)

  • Park, Beungyong;Jeong, Yongdae;Shin, Hyunchul;Cho, Jinkyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.11
    • /
    • pp.612-620
    • /
    • 2017
  • Power consumption in Southeast Asia is steadily increasing due to industrialization and the effects of hot and humid climates. However, there are not enough energy generation facilities and infrastructures to meet the growing demand because it is difficult to secure the construction and operation costs of the transmission and distribution systems. This study aims to develop a gas engine driven heat pump system that supplies heating, cooling and electric power to buildings. This system, besides its normal function to produce heat, has the capacity to generate electricity on a household level. This paper investigates similar cases overseas before developing the system. Through the investigation of commercialized similar systems, the level of technology and market trend of development system were identified. Features and specifications of commercial and industrial systems will be used for system development.

Characteristics of Syngas Refinery via Rice Husk Gasification in the Updraft Fixed-bed Gasification System (Updraft 고정층 가스화 시스템에서의 왕겨 가스화 합성가스 정제특성)

  • Yoon, Youngsik;Sung, Hojin;Park, Sunam;Gu, Jaehoi
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.171.2-171.2
    • /
    • 2011
  • 지속가능한 발전과 저탄소 녹색성장의 개념이 대두되면서 우리나라를 비롯한 주요 선진국은 자국의 화석연료 의존도를 낮추고 대체에너지로 환경친화적이며, 청정에너지로 각광받는 신 재생에너지의 활용에 경제적, 정책적 지원을 아끼지 않고 있는 실정이다. 실제로 유럽에서는 바이오매스의 일종인 우드칩을 활용한 가정용 보일러가 보급되고 있으며, 동남아시아에서는 열대식물을 이용한 저온열분해를 활용하여 바이오디젤을 생산하고 있다. 우리나라의 경우 대부분의 바이오매스는 발생되는 임야에서 재이용되거나 경제성이 있을 경우에 운송되어 재활용되고 있으며, 임부목과 같은 일부 바이오매스는 수익성이 없어 발생현지에 방치되는 경우도 있다. 본 연구에서 주목한 왕겨의 경우 미곡종합처리장에서 대량으로 발생되지만 그 활용도에 있어서 축적된 바이오에너지에 비해 에너지회수율이 저조하다고 할 수 있다. 왕겨는 임야에서 발생되는 폐목재나 다른 바이오매스에 비해 함유되어 있는 수분이 적고(12%), 휘발분의 함량이 많으며(58%), 고정탄소(17%), 회분(13%)로 열분해/가스화에 적용가능하다. 본 실험에서 생산된 합성가스의 활용방법으로는 보일러를 이용한 스팀 및 전력생산, 가스엔진을 이용한 전력생산, 폐열회수 등이 있으며 생산된 합성가스를 활용하기 위해서는 오염물질의 정제특성에 대한 연구가 선행되어야 한다. 따라서 본 연구에서는 합성가스 내에 존재하는 분진, 타르, HCl, HCN, $NH_3$의 제거효율을 조사하였다.

  • PDF

Propulsion System for PAV Development : Now and Tomorrow (PAV용 미래형 추진기관의 현황 및 전망)

  • Yun, Dong-Ik;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.305-308
    • /
    • 2009
  • In this paper, we present the status and prospect for PAV propulsion system. Reciprocating engines are suitable for current PAV because of its efficiency and price advantages. However, fuel cells and batteries may replace conventional engines in the near future.

  • PDF

An Experimental and Numerical Analysis on Performance Comparison of a Trigeneration Desiccant System and Conventional Air-conditioning System (Trigeneration 제습공조시스템과 일반공조시스템의 성능 비교 실험 및 수치해석)

  • Kim, Hyoung-Tae;Chae, Jungmin;Cho, Young-Ah;Park, So-jin;Song, Geun-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.32-37
    • /
    • 2018
  • Recently, the distributed power generation market using natural gas is expected to expand gradually according to the government's future energy conversion policy. Distributed power generation means small power generation source near the power demand site, which has the advantage of reducing the construction costs of the transmission and distribution infrastructure, operating cost and power loss. A typical example of distributed generation using natural gas is the trigeneration system. In this study, we conducted a basic study on the performance analysis of trigeneration desiccant system for dehumidifying / cooling / heating in the air conditioner room by using the cold and engine waste heat energy generated in the trigeneration system. It shows that the system efficiency increases and the energy consumption decreases as the temperature difference between the inlet and outlet of the trigeneration system increases compared with the general air conditioning system.

Operating Characteristics of Pilot Scale Multi-Staged Waste Pyrolysis & Gasification System (파일럿 규모의 폐기물 다단열분해 가스화시스템의 운전특성)

  • Lee, Jeong-Woo;Yu, Tae-U;Bang, Byeong-Ryeol;Moon, Ji-Hong;Lee, Jae-Uk;Park, Sang-Shin;Kim, Nack-Joo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.331-335
    • /
    • 2009
  • A novel multi-staged waste pyrolysis & gasification system of pilot scale (~1 ton/day) is designed and constructed in Korea Institute of Industrial Technology. The pyrolysis & gasification system is composed of pyrolysis & gasification system, syngas reformer, syngas cleaning system, gas engine power generation system and co-combustion system. For each unit process, experimental approaches have been conducted to find optimal design and operating conditions. As a result, We can produce syngas with a calorific value of ~4000 kcal/$Nm^3$ and cold gas efficiency of the system is more than 55 % in case of waste plastic and oxygen as a gasifying agent.

  • PDF

Measurements and Calculation of Injection Mass Rate of LFG for Intake Injection in Spark Ignition Engines (불꽃점화 엔진의 흡기관 분사를 위한 매립지가스 분사량의 측정 및 계산)

  • Kim, Kyoungsu;Choi, Kyungho;Jeon, Wonil;Kim, Bada;Lee, Daeyup
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.36-42
    • /
    • 2021
  • When the landfill gas generated at the landfill site is released into the atmosphere, methane gas with a high global warming potential is emitted, which adversely affects climate change. When methane contained in landfill gas is used as fuel for internal combustion engines and burned to generate electricity, it is emitted into the atmosphere in the form of carbon dioxide, which can contribute to lowering the global warming potential. Therefore, in order to use the landfill gas as fuel for power generation using an internal combustion engine, it is important to increase the thermal efficiency of the engine. Thus, it is necessary to use a fuel supply system in which gas is injected using an electronically controlled injector at an intake port for each cylinder rather than a fuel supply technology using the conventional mixer technology. In order to use the electronically controlled gas injection method, it is important to accurately measure the mass flow rate according to the conditions of using landfill gas. For this, a study was conducted to measure the injection amount and calculate them in order for the intake port gas injection of landfill gas.

Temperature Variation of Exhaust Gas in Diesel Generator for Low Pressure SCR (저압 SCR을 위한 디젤발전기 배기가스 온도 변화)

  • Hong, Chul Hyun;Lee, Chang Min;Lee, Sang Duk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.355-362
    • /
    • 2021
  • To facilitate low-pressure selective catalyst reduction (L.P SCR), a high exhaust-gas temperature of a four-stroke diesel engine for a ship's generator is required. This study aimed at reducing the exhaust-gas temperature by adjusting the valve open-close timing and fuel injection timing to satisfy the operating conditions of L.P SCR and prevent accidents associated with the generator engine due to high temperature. To lower exhaust-gas temperature, the angle of the camshaft was adjusted and the shim of the fuel injection pump was added. As a result, the maximum explosion pressure increased and the average of the turbocharger outlet temperature dropped. Considering the heat loss from the turbocharger outlet to the SCR inlet, the operation condition for L.P SCR was satisfied with 290 ℃. The study demonstrates that safe operation of a diesel generator can be achieved by lowering the exhaust-gas temperature.

Energy efficiency improvements in part load for a marine auxiliary diesel engine (선박발전기용 디젤엔진의 부분부하에서 에너지 효율 개선에 관한연구)

  • Jung, Kyun-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.877-882
    • /
    • 2014
  • The reduction of CO2 emission has been discussed in the Marine Environment Protection committee in the International Maritime Organization as the biggest causes of GHG for the purpose of indexing CO2 amounts released into the atmosphere from ships. Accordingly, various methods including the change in the hull design to improve energy efficiency, the coating development to reduce friction resistances, the additives development for improving thermal efficiency in an engine, the low-speed operation to reduce fuel consumptions, and etc. have been applied. The main engine of a ship is an electronic engine for improving the efficiency of the whole load area. However, marine generator engines still use mechanical drive engines in intake, exhaust, and fuel injection valve drive cams. In addition, most of marine generator engines in ships apply a part-load operation of less then 80% due to an overload protection system. Therefore, marine auxiliary diesel engine set at 100% load is necessary to readjust in order to efficient operation because of part-load operation. The objective of this study is to report the results of the part-load fuel consumption improvement by injection timing readjust to identifying the operational characteristics of a marine generator engine currently operated in a ship.

Theoretical Study on Fuel Savings of Marine Diesel Engine by Exhaust-Gas Heat-Recovery System of Combined Cycle (복합 사이클의 배기가스 열회수 시스템에 의한 선박용 디젤엔진의 연료 절약에 관한 이론적 연구)

  • Choi, Byung Chul;Kim, Young Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.171-179
    • /
    • 2013
  • The thermodynamic characteristics of a combined cycle applied with a topping cycle such as a trilateral cycle at relatively high temperatures and a bottoming cycle such as an organic Rankine cycle at relatively low temperatures have been theoretically investigated. This is an electric generation system used to recover the waste heat of the exhaust gas from a diesel engine used for the propulsion of a large ship. As a result, when the boundary temperature between the topping and the bottoming cycles increased, the system efficiencies of energy and exergy were simultaneously maximized because the total exergy destruction rate (${\sum}\dot{E}_d$) and exergy loss ($\dot{E}_{out2}$) decreased, respectively. In the case of a marine diesel engine, the waste heat recovery electric generation system can be utilized for additional propulsion power, and the propulsion efficiency was found to be improved by an average of 9.17 % according to the engine load variation, as compared to the case with only the base engine. In this case, the specific fuel consumption and specific $CO_2$ emission of the diesel engine were reduced by an average of 8.4% and 8.37%, respectively.