• Title/Summary/Keyword: 가스엔진발전

Search Result 164, Processing Time 0.021 seconds

A Study on the Safety Management Methods of Micro-Gas Engine Combined Heat and Power System (소형 가스엔진 열병합발전 시스템의 안전관리 방안에 관한 연구)

  • Kim, So-Hyun;Kim, Min-Woo;Lee, Eun-Kyung;Lee, Jung-Woon
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.76-89
    • /
    • 2018
  • The distribution of the combined heat and power system is active as a solution to the instability of energy supply and environmental pollution caused by continuous industrial development. In Korea, the safety standards for combined heat and power system using a gas engine are insufficient therefore the study on this is needed. In this study, the safety performance and structural/material assessment items of domestic and international standards applied to the combined heat and power system were analyzed to carry out a standardization study on safety performance applicable to 20 kW gas engine combined heat and power system. In addition, the safety performance assessment (plan) of the gas engine combined heat and power system was derived by performing risk analysis and risk assessment using HAZOP. Assessment items include engine ignition systems related to safety performance, piping tight performance, watering and temperature rise performance, combustion performance, electrical efficiency, thermal efficiency, overall efficiency and humidity performance. Gas and water pipes, gas control and shut-off valves, durability, heat resistance, and cold resistance of metal or non-metallic materials related to the structure and materials of the gas engine combined heat and power systems.

Performance Simulation of Motorcycle Engine Exhaust Heat Recovery System using Thermoelectric Element (열전소자를 이용한 모터사이클용 엔진 배기 폐열 회수 시스템 성능 해석)

  • Lee, Moo-Yeon;Kim, Kihyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.695-701
    • /
    • 2018
  • Research into exhaust heat recovery has been actively carried out to improve the thermal efficiency of internal combustion engines. In this study, the performance of thermoelectric generation from exhaust heat recovery for motorcycle engines was analyzed by 1-D thermo-fluid simulation. GT-SUITE, which was developed by Gamma Tech., was used for the simulation of the internal combustion engine and thermoelectric generation system. The basic performance of the engine was analyzed in the range of engine speed of 1000~7000 rpm and engine load of 0~100%. The ratio of exhaust heat energy to fuel chemical energy was found to be about 40~60%. A combined simulation of the engine model and thermoelectric generation model was carried out to analyze the voltage, current and power generated by the thermoelectric material. The generation characteristics of the thermoelectric material was dominantly affected by the exhaust gas temperature. The maximum generated power of the current thermoelectric generation system was found to be about 2.2% of the total exhaust heat energy. The design optimization of the thermoelectric generation system will be carried out to maximize its power generation and economic feasibility.

5MW Class Gas Turbine Engine Test Cell (5MW급 발전용 가스터빈 엔진 성능시험 설비)

  • Nam, Sam-Sik;Song, Ju-Young;Kim, Sung-Hyun;Lee, Ki-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.339-342
    • /
    • 2010
  • Doosan Heavy Industries & Construction Co., Ltd. constructed a gas turbine engine test cell to verify operating characteristics and design parameters of 5MW class gas turbine engine for power generation under developing. Engine test cell was designed to satisfy critical requirements to scrutinize all performance parameters of the engine with safe and reliability in accordance with design specification. As the test cell developed can effectively reproduce engine operation conditions covering from start-up to maximum power condition, it can be utilized to make a continuing design improvement of the engine based on practical test data at full stretch. Moreover, it is expected to be serviceable to develop derivative engines and be utilized to put them into serial production and contribute to a competitiveness reenforcement as a gas turbine engine manufacturer.

  • PDF

가스터빈 연구개발의 현황 및 전망

  • 김광호
    • Journal of the KSME
    • /
    • v.30 no.6
    • /
    • pp.542-547
    • /
    • 1990
  • 가스터빈은 브레이턴사이클을 이용한 것으로서 피스톤 왕복엔진과 함께 동력기관으로써 지금까지 사용되고 있으며 특히 경량, 고출력의 장점으로 인해 항공기 엔진의 추진기로서 많이 사용되고 있다. 1905년 프랑스에서 압축비 4.8회전수 4250rpm으로 40HP의 출력을 내는 현재와 같은 형 태의 가스 터빈을 개발한 이후 많은 발달과 함께 2차 대전 후에는 항공용 뿐만 아니라 발전용, 동력용 등 산업용 엔진에도 응용되었다. 세계적으로는 유럽이 가스 터빈에 관한 연구를 미국보 다 앞서 활발히 진행하였으며 1957년 General Electric사의 F-4팬텀에 사용된 J-79터보 제트 엔진을 개발함으로써 가스터빈 엔진분야에 미국이 주도권을 잡게 되었고 많은 전문회사가 가스 터빈 엔진설계 제작에 참여하고 있다. 이와 같이 가스 터빈에 대한 개발연구가 계속 이루어진 것은 가스 터빈이 다른 동력기관 보다 단위 중량당 많은 출력을 낼 수 있고, 각 요소들이 회전 운동을 함으로써 고속운전을 할 수 있고, 부하 변동에 빨리 적응하며, 마찰부분이 적어 윤활유 소비가 적은 장점들이 있기 때문이다. 본 글에서는 이와 같은 가스 터빈 연구개발의 국내외 현황 및 그 전망에 대해서 기술하고자 한다.

  • PDF

Numerical study on effect of intake valve timing on characteristics of combustion and emission of Natural gas-Diesel engine (발전용 천연가스-디젤 혼소 엔진의 흡기밸브 개폐시기에 따른 연소 및 배출 특성에 대한 수치 해석적 연구)

  • Jung, Jaehwan;Song, Soonho;Hur, Kwang beom
    • Journal of Energy Engineering
    • /
    • v.25 no.2
    • /
    • pp.29-36
    • /
    • 2016
  • In this study, diesel/natural gas dual-fuel engine was studied numerically using DoE method. The engine is CI engine for power generation and modelled by 1-D simulation GT-power. The combustion and emission characteristics were analyzed as a function of IVO, IVC and the ratio of natural gas to total fuel enegy. As the proportion of natural gas increases, the BSFC(Brake specific fuel consumption) is increased and BSNOx(Brake specific NOx) is decreased. If specific valve timing to improve the BSFC is applied to the engine, the BSFC is decreased by 1% and simultaneously BSNOx is decreased by 36%.