• Title/Summary/Keyword: 가스스프링

Search Result 55, Processing Time 0.019 seconds

Design of Seat Belt Pretensioner driven by Elastic Force (탄성력 기반 안전벨트 프리텐셔너 설계)

  • Yongsu Lee;Seyun Park;Hyuneun Lee;Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.545-550
    • /
    • 2023
  • A pretensioner is a safety device that protects occupants by pulling the seat belt in the event of a vehicle collision. However, since the pretensioner is driven by a explosive method, it is necessary to replace not only the gas generator but also all connecting parts including the manifold after an accident. Therefore, in this paper, we propose an elastic force-based pretensioner that can be used safely and semi-permanently. After analyzing the operating mechanism of the existing pretensioner from a thermodynamic/dynamic point of view, the spring stiffness that can be deployed within an appropriate operating time was determined by converting the gas explosion energy into elastic energy. In addition, the coil spring shape that satisfies the elastic stiffness was designed in consideration of the vehicle interior installation standard. Finally, the operating performance of the pretensioner driven by elastic force was verified through fabrication.

A Study on the Optimal Design of Automotive Gas Spring (차량용 가스스프링의 최적설계에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.45-50
    • /
    • 2017
  • The gas spring is a hydropneumatic adjusting element, consisting of a pressure tube, a piston rod, a piston and a connection fitting. The gas spring is filled with compressed nitrogen within the cylinder. The filling pressure acts on both sides of the piston and because of area difference it produces an extension force. Therefore, a gas spring is similar in function compare to mechanical coil spring. Conversely, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL (Nonlinear Programming by Quadratic Lagrangian) and GA (genetic algorithm) for optimization. The NLPQL method builds a quadratic approximation to the Lagrange function and linear approximations to all output constraints at each iteration, starting with the identity matrix for the Hessian of the Lagrangian, and gradually updating it using the BFGS method. On each iteration, a quadratic programming problem is solved to find an improved design until the final convergence to the optimum design. In this study, we conducted optimization design of the gas spring reaction force with NLPQL.

Three Axis Disk Spring Damper Containing Wedge System (웻지를 이용한 3축 방향 디스크 스프링 댐퍼에 관한 연구)

  • Choi, Myung-Jin;Jeong, Ji-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2009
  • This study pertains to damping device to reduce vibrational responses and shocks in multi-directions. To enhance the capability of disk spring damper which works for vertical vibration and shock, a multi-directional damper is proposed, which contains wedge system as well as disk spring stack. Wedge system converts horizontal load into vertical load. A mathematical model is proposed and investigated for the nonlinear behaviors of the disc spring damper containing wedge system. The results accord with the experimental results. Equivalent viscous damping in vertical and horizontal directions are found based upon energy dissipated.

  • PDF

Optimum Design of a Coil Spring for Improving the Performance of a Spring -Operated Mechanism (스프링 조작기의 성능 개선을 위한 코일스프링의 최적 설계)

  • Lee, Dae Woo;Sohn, Jeong Hyun;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.275-280
    • /
    • 2016
  • In this study, a release test bed is designed to evaluate the dynamic behaviors of a coil spring. From the release tests, the dynamic behaviors of a coil spring are analyzed. A lumped parameter spring model was established for numerical simulation of a spring. The design variables of a coil spring are optimized by using the design of experiments approach. Two-level factorial designs are used for the design optimization, and the primary effects of the design variables are analyzed. Based on the results of the interaction analysis and design sensitivity analysis, the level of the design variables is rearranged. Finally, the mixed-level factorial design is used for the optimum design process. According to the optimum design of the opening spring, the dynamic performance of the spring-operated mechanism increases by 2.90.

A Study on the Dynamic Characteristics of the Gas Spring on the Automotive Application (차량 장착상태에서의 가스 스프링 동적 특성 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.15-20
    • /
    • 2015
  • Unlike a typical metal spring, a gas spring uses compressed gas contained in a cylinder and compressed by a piston to exert a force. A common application includes automobiles where gas spring are incorporated into the design of open struts that support the weight of tail gate. They are also used in furniture such as office chairs, and in medical and aerospace applications. The gas spring works by the application of pressurized gas (nitrogen) contained in a cylinder. The internal pressure of the gas spring greatly exceeds atmospheric pressure. This differential in pressure exists at any rod position and generates an outward force on the rod, making the gas spring extend. In this paper, we investigated the dynamic characteristics of a gas spring on an automotive tail gate system.

A Smart Fire Detector System for Fire Prevention (화재 예방을 위한 스마트 화재 감지기 시스템)

  • Park, Cha-Hun;Kang, Yun-ho;Jang, Min-sung;Seo, Hee-jun;Kim, Yun-min
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.293-294
    • /
    • 2022
  • 본 프로젝트에서는 화재 발생 시 발견하기 어려운 곳이나 화재가 빈번한 곳에 구축하는 것을 목적으로 하고 있다. 가스와 불꽃을 감지하는 센서로 화재를 감지하고, 디스플레이와 LED 그리고 소리를 통해 화재발생을 알려준다. 그 후, 스프링클러가 작동하여 초기화재에 대응에 도움을 주고 119에 자동으로 신고가 된다. 일정 수치의 센서에 대한 감지 값을 인식하고 인식한 감지 값에 반응하여 화재 대처를 가능하게 구현하는 시스템을 제안한다. 감지센서를 통한 화재장소에서의 불꽃과 가스를 감지하게 되어 스프링클러가 1차적으로 화재의 번짐을 지연해 주고 은근 소방서에 자동적으로 신고를 하게 되는 자동화 프로그램 이행을 목표로 하고 있다.

  • PDF

Dynamic behavior analysis of tunnel structure under gas explosion load (가스폭발하중에 의한 터널 구조물의 동적거동해석)

  • Kim, Young-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.5
    • /
    • pp.413-430
    • /
    • 2011
  • Consideration on the explosion resistant design of infrastructure has increased in the recent years. The explosion load is caused by gas explosion or bomb blast. In this study an analytical model is developed, whereby the tunnel structure is divided in several elements that are schematized as single degree of freedom mass-spring-dashpot systems on gas explosion. Using this simple model a sensitivity analysis has been carried out on tunnel structure design parameters such as explosive peak pressure, duration of the load, thickness of structure, burial depth. Finite element method was used to investigate the dynamic response and plastic zone of a tunnel under gas explosion. And it was found from the comparison of the analysis results that there are slight differences in the response of the intermediate wall between the single degree of freedom mass-spring-dashpot model and FEM.

Development of Relief Valves for the Domestic Gas-fired Hot Water Boilers (가정용 가스보일러 과압방지밸브의 개발 연구)

  • Kim Young Gyu;Kwon Jeong Rock;Kim Ji Yoon;Suh Joon Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.1 s.9
    • /
    • pp.63-68
    • /
    • 2000
  • We have developed a new relief valve which is a safety device for the domestic gas-fired hot water boilers. The relief valve has been designed to expand the inner diameter of the inlet, the outlet and the seat of the valve considering the relief capacity, and also to separate the spring from the room heating water. Therefore, we could minimize the adhesion and/or obstruction of the inlet and the corrosion phenomena of the spring which used to be the problem of the conventional relief valves. Test results of the developed relief valve showed that the performance of the opening pressure, reseating pressure, tightness, endurance were excellent, and the operating boiler with developed relief valve was evaluated as very good. The standardization and application of the relief valve can provide the advantage of component exchange and easy maintenance and repair.

  • PDF

A Study on the Reaction Force Characteristics of the Gas Spring for the Automotive (자동차용 가스 스프링의 반력 특성에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.35-40
    • /
    • 2015
  • A gas spring provides support force for lifting, positioning, lowering, and counterbalancing weights. It offers a wide range of reaction force with a flat force characteristic, simple mounting, compact size, speed controlled damping, and cushioned end motion. The most common usage is as a support on a horizontally hinged automotive tail gate. However, its versatility and ease of use has been applied in many other industrial applications ranging from office equipment to off-road vehicles. The cylinder of a gas spring is filled with compressed nitrogen gas, which is applied with equal pressure on both sides of the piston. The surface area of the rod side of the piston is smaller than the opposite side, producing a pushing force. The magnitude of the reaction force is determined by the cross-sectional area of the piston rod and the internal pressure inside the cylinder. The reaction force is influenced by many design parameters such as initial chamber volume, diameter ratio, etc. In this paper, we investigated the reaction force characteristics and carried out parameter sensitivity analysis for the design parameters of a gas spring.

The Numerical Analysis and Experimental Verification of the Heat Transfer Effect on the Highly Pressurized Gas Spring (고압 밀폐 가스 스프링에서의 열전달 효과 수치해석 및 실험적 검증)

  • Han, Insik;Choi, Kyojun;Kim, Jaeyong;Lee, Yoonbok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.87-97
    • /
    • 2013
  • Recently the use of gas spring in the combat and commercial vehicle's suspension is increasing. Because of its nonlinear characteristics, the gas spring can support wide range of dynamic loads and gives good ride quality. In design of gas spring, isothermal and adiabatic processes are applied generally, but those processes could not produce heat transfer effect in the simulation. So in this study, heat transfer differential equation and BWR/Ideal state equation are used to calculate the pressure of gas spring which is changing with time. The numerical analysis showed that the pressure of gas spring forms a hysteresis loop in the both of the state equations. But the peak pressure value of BWR equation over 0.1Hz frequency are higher than that of adiabatic process. And the test results showed that the differences between test results and ideal gas equation are smaller than those of BWR equation, so the ideal equation is more accurate than BWR equation in this case.