• Title/Summary/Keyword: 가스메탈아크

Search Result 54, Processing Time 0.022 seconds

Comparison of Mechanical Properties and Microstructural Charateristies of Tandem GMAW Weld Metal in 490MPa Grade Steel (490MPa급 고장력강 탄뎀 가스메탈아크 용접부에 대한 기계적 성질과 미세조직 비교)

  • Yi, Hui-Jun;Kang, Sung-Soo;Yu, Gum-Bin;Bae, Won-Hak;Moon, Hyun-Soo
    • Journal of Welding and Joining
    • /
    • v.27 no.2
    • /
    • pp.76-81
    • /
    • 2009
  • Tandem GMAW is one of the high performance welding process and used in many industries to increase the productivity. An evaluation is presented of the mechanical properties and microstructural characteristics of the Tandem GMAW and conventional Single GMAW welds in 30mm thickness 490MPa grade steel by comparison method. Welding sequence and bead with and hight was kept, avoiding the effect of the bead shape and welding sequence. Tension, bending, hardness and Charpy impact test results of Tandem GMAW met the requirement of specification and showed similar distribution with conventional Single GMAW. Volume fraction of ferrite phase in weld metal showed little difference between Tandem GMAW and Single GMAW

A Study on Effect of Flex Additions for Selecting the Process Parameters in GMA Welding processes (GMA 용접공정에서 공정변수 선정을 위한 플럭스 첨가에 관한 연구)

  • Kim, In-Ju;Kim, Jun-Ki
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • As the quality of a weld joint is strongly influenced by process parameters the welding process, an intelligent algorithms that can predict the bead geometry and shape to accomplish the desired mechanical properties of the weldment should be developed. In this study, prepared by ${\Phi}1.6mm$ GMA welding of metal wire nose Advice jowelui 350A 600A grade level inverter welder and DAIHEN SCR's were carried out using welding. Welding conditions were 5.5m/min wire feed rate the welding current is rapidly transmit approximately 260A, welding voltage was about 30V. CTWD a 22mm, shielding gas was Ar 20L/min and the welding speed was a 240mm/min. Using data collected during welding equipment welding current and welding voltage waveform was analyzed by measuring the volume of the transition mode. Addition of $CaCO_3$ as a loss of the spread of the weld bead dilution rate decreased, suggesting that, GMA in the overlay welding bead shape control, dilution control and may be used as a welding flux is considered. Stabilizing effect of the arc by the Ca-containing $CaF_2$, $CaCO_3$, $CaMg(CO_3)_2$, respectively, welding flux 0.1wt.% added GMA welding and weld overlay were evaluated with dilution, $CaF_2$, and $CaMg(CO_3)_2$ added to the dilution of Seemed to increase.

A Study on Selection of Gas Metal Arc Welding Parameters of Fillet Joints Using Neural Network (신경회로망을 이용한 필릿 이음부의 가스메탈 아크용접변수 선정에 관한 연구)

  • 문형순;이승영;나석주
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.44-56
    • /
    • 1993
  • The arc welding processes are substantially nonlinear, in addition to being highly coupled multivariable systems, Frequently, not all the variables affecting the welding quality are known, nor may they be easily quantified. From this point of view, decoupling between the welding parameters from the welding quality is very difficult, which makes it also difficult to control the welding parameters for obtaining the desired welding quality. In this study, a neural network based on the backpropagation algorithm was implemented and adopted for the selection of gas metal arc welding parameters of the fillet joint, that is, welding current, arc voltage and welding speed. The performance of the neural network for modeling the relationship between the welding quality and welding parameters was presented and evaluated by using the actual welding data. To obtain the optimal neural network structure, various types of the neural network structures were tested with the experimental data. It was revealed that the neural network can be effectively adopted to select the appropriate gas metal arc welding parameter of fillet joints for a given weld quality.

  • PDF

A Study on Modeling of Short-Circuliting Phenomena and Selection of Current Waveform for Reduction of Spatter in GMAW (가스 메탈 아크 용접에서 단락현상 모델링 및 스패터 감소를 위한 전류파형 선정에 관한 연구)

  • 황주호;문형순;나석주;한광수
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.57-67
    • /
    • 1996
  • With an expansion in automation of welding processes, emphasis has been shifted from other welding processes to the GMA welding. However, there is a problem with this process that the spatter occurs very frequently. In GMA welding, there are several types in the way of metal transfer from the electrode wire to the weld pool, which have a close relatonship with the spatter genetration. This study was concerned with the spatter occurring in the short-circuiting transfer. In welding with short-circuiting, the electromagnetic force formed by the welding current facilitatics the rupture of the metal bridge between the wire and workpiece and ensures the normal process of the welding process. However, the spatter can be genetrated from the droplet because of the upward magnetic force, when the droplet contacts with the weld pool. The passage of current through the bridge results in the accumulation of the thermal energy, which causes the bridge to explode in the final stage of short-circuiting, thus forming the spatter. Based on the above phenomena in conjunction with other experimental results published, the physical phenomenon related with the occurrence of spatter was modeled and the current waveform was investigated to reduce the spatter. Finally, the fuzzy rule based method was proposed to predict the time of short-circuiting and arcing in the metal transfer.

  • PDF

A Study of the Thermal Analysis of Horizontal Fillet Joints by Considering the Bead Shape in GMA Welding (GMA 용접에서 비드형상을 고려한 수평필릿용접부의 온도해석에 관한 연구)

  • Jo, Si-Hun;Kim, Jae-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.71-78
    • /
    • 2001
  • In GMA(Gas Metal Arc)Welding, the weld size that is a locally melted area of a workpiece is one of the most important considerations in determining the strength of a welded structure. Variations in the weld power and the welding heat flux may affect the weld pool formation and ultimately the size of the weld. Therefore, an accurate prediction of the weld size requires a precise analysis of the weld thermal cycle. In this study, a model which can estimate the weld bead geometry and a method for thermal analysis, including the model, are suggested. In order to analyze the weld bead geometry, a mathematical model was developed with transformed coordinates to apply to the horizontal fillet joints. A heat flow analysis was performed with a two dimensional finite element model that was adopted for computing the base metal melting zone. The reliability of the proposed model and the thermal analysis was evaluated through experiments, and the results showed that the proposed model was very effective for predicting the weld bead shape and good correspondence in melting zone of the base metal.

  • PDF

Development of Inference Algorithm for Bead Geometry in GMAW (GMA 용접의 비드형상 추론 알고리즘 개발)

  • Kim, Myun-Hee;Bae, Joon-Young;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.132-139
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) processes, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality. Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWD (contact-tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using neuro-fuzzy algorithm. Neural networks was applied to design FL(fuzzy logic). The parameters of input membership functions and those of consequence functions in FL were tuned through the method of learning by backpropagation algorithm. Bead geometry could be reasoned from welding current, arc voltage, travel speed on FL using the results learned by neural networks. On the developed inference system of bead geometry using neuro-furzy algorithm, the inference error percent of bead width was within $\pm$4%, that of bead height was within $\pm$3%, and that of penetration was within $\pm$8%. Neural networks came into effect to find the parameters of input membership functions and those of consequence in FL. Therefore the inference system of welding quality expects to be developed through proposed algorithm.

An Experimental Study on Mathematical Model to Predict Bead Width in GMA Weldment (GMA 용접부의 비드폭 예측을 위한 수학적 모델에 관한 실험적 연구)

  • Kim, Ill Soo;Park, Min Ho;Kim, Hak Hyoung;Lee, Jong Pyo;Park, Cheol Kyun;Shim, Ji Yeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.209-217
    • /
    • 2015
  • Generally welding is one of the most important processes to have a strong influence on the quality and productivity from a manufacture-based industry such as shipbuilding, automotive and machinery. The GMA(Gas Metal Arc) welding process involves large number of interdependent welding parameters which may affect product quality, productivity and cost effectiveness. To solve such problems, mathematical models are required to select the welding parameters for GMA welding process. In this study, the GMA welding process was studied using the information generated during the welding. The statistical analysis of a generalized regression approach was conducted by the following three methods: Firstly using the mathematical model (linear regression, 2nd regression); Secondly GA(Genetic Algorithm) with intelligent models; And finally using response surface analysis of models to develop the relationships between welding parameters and bead width as welding quality.

Effects of Welding Parameters on Porosity Formation in Weld Beads of Galvanized Steel Pipes produced with Gas Metal Arc Welding (아연도금강관의 가스메탈아크용접에서 용접인자가 기공형성에 미치는 영향)

  • Lim, Young-Min;Jang, Bok-Su;Koh, Jin-Hyun
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.46-50
    • /
    • 2012
  • This study was carried out to investigate the effect of welding parameters such as shielding gas compositions welding voltage and welding current on the pore formation in the weld beads of galvanized steel pipes produced with gas metal arc welding. The porosity was evaluated and rated by metallography and radiographic test in terms of weight percentage, number and distribution of pores in weld beads. The porosity increased with increasing welding voltage and current, in which Ar gas produced the most porosity while $Ar+5%O_2$ generated the least porosity. It was found that the porosity could be reduced by selection of the proper gas mixture composition such as $Ar+5%O_2$ and $Ar+10%CO_2$ and by using current (130~150A) and voltage(16~20V).

An Experimental Study on Optimizing for Tandem Gas Metal Arc Welding Process (탄뎀 가스메탈아크 용접공정의 최적화에 관한 실험적 연구)

  • Lee, Jongpyo;Kim, Illsoo;Lee, Jihye;Park, Minho;Kim, Youngsoo;Park, Cheolkyun
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.22-28
    • /
    • 2014
  • To enhance productivity and provide high quality production material in a GMA welding process, weld quality, productivity and cost reduction affects the number of process variables. In addition, a reliable welding process and conditions must be implemented to reduce weld structure failure. In various industries the welding process mathematical model is not fully formulated for the process parameter and on the welding conditions, therefore only partial variables can be predicted. The research investigates the interaction between the welding parameters (welding speed, distance between electrodes, and flow rate of shielding gas) and bead geometry for predicting the weld bead geometry (bead width, bead height). Taguchi techniques are applied to bead shape to develope curve equation for predicting the optimized process parameters and quality characteristics by analyzing the S/N ratio. The experimental results and measured error is within the range of 10% presenting satisfactory accuracy. The curve equation was developed in such a way that you can predict the bead geometry of constructed machinery that can be used for making tandem welding process.

A Study Evaluating Welding Quality in Pressure Vessel Using Mahalanobis Distance (마할라노비스 거리를 이용한 압력용기 용접부 용접성 평가에 관한 연구)

  • Kim, Ill Soo;Lee, Jong Pyo;Lee, Ji Hye;Jung, Sung Myoung;Kim, Young Su;Chand, Reenal Ritesh;Park, Min Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.22-28
    • /
    • 2013
  • Robotic GMA (Gas Metal Arc) welding process is one of widely acceptable metal joining process. The heat and mass inputs are coupled and transferred by the weld arc to the molten weld pool and by the molten metal that is being transferred to the weld pool. The amount and distribution of the input energy are basically controlled by the obvious and careful choices of welding process parameters in order to accomplish the optimal bead geometry and the desired quality of the weldment. To make effective use of automated and robotic GMA welding, it is imperative to predict online faults for bead geometry and welding quality with respect to welding parameters, applicable to all welding positions and covering a wide range of material thickness. MD (Mahalanobis Distance) technique was employed for investigating and modeling the GMA welding process and significance test techniques were applied for the interpretation of the experimental data. To successfully accomplish this objective, two sets of experiment were performed with different welding parameters; the welded samples from SM 490A steel flats. First, a set of weldments without any faults were generated in a number of repeated sessions in order to be used as references. The experimental results of current and voltage waveforms were used to predict the magnitude of bead geometry and welding quality, and to establish the relationships between weld process parameters and online welding faults. Statistical models developed from experimental results which can be used to quantify the welding quality with respect to process parameters in order to achieve the desired bead geometry based on weld quality criteria.