• Title/Summary/Keyword: 가스냉각

Search Result 573, Processing Time 0.032 seconds

Thermal Design of Hot Components in the Gas Turbine and Ram Jet (가스터빈 및 램제트의 고온 부품 열설계 기술)

  • Cho, Hyung-Hee
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.437-438
    • /
    • 2008
  • To improve efficiency and allowable life of gas turbine and ram jet, the proper cooling techniques are needed. It is required not only the basic research of variable cooling techniques but also analysis of real operating conditions when we design the cooling system. From the present experimental and analytical results, we can predict the thermal stress and allowable life. This design process is for a thermal design technique that is the most foundational design technique to improve the efficiency of gas turbines and ram jets

  • PDF

Effect of Boundary Conditions on Internal Coolant Flow in Gas Turbine Blades (경계 조건이 가스터빈 블레이드 냉각공기 유량에 미치는 영향)

  • Shin, Jee-Young;Park, Byung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.559-564
    • /
    • 2001
  • Advanced gas turbine engines employ turbine entry temperatures so high that cooling of the turbine blades is essential. The coolant flow introduces losses which need to be minimized, and therefore it is important that the minimum amount of coolant is used. This work presents the result of the one-dimensional analysis and the effect of the boundary conditions on coolant flow rate in gas turbine blades.

  • PDF

Effect of Boundary Condition on the Flow Rate of the Internal Coolant in Gas Turbine Blades (경계조건에 따른 가스터빈 블레이드 냉각공기 유량변화)

  • 신지영;박병규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.888-894
    • /
    • 2001
  • Advanced gas turbine engines employ turbine entry temperatures so high that cooling of the turbine blades is essential. The coolant flow introduces losses which need to be minimized, and therefore it is important that the minimum amount of coolant should be used. This work presents the result of the one-dimensional analysis and the effect of the boundary conditions on coolant flow rate in gas turbine blades.

  • PDF

CFD를 이용한 막냉각(Film-Cooling) 해석

  • Na, Sang-Gwon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.6
    • /
    • pp.64-68
    • /
    • 2008
  • 막 냉각 연구를 위해 CFD를 이용할 때 적용 한계 및 그 타당성을 검증하고자 하였다. 이 글에서는 냉각공기공으로부터 분출된 냉각공기가 고온 고속으로 흐르는 주유동과 평판 사이에 벽면을 고온의 가스에 노출되는 것을 막기 위해 위치시킨 막냉각공기 흐름의 형태를 CFD를 이용하여 분석하였다. 모든 경계조건 및 격자계 그리고 검증 단계의 예까지 서술함으로써 이러한 CFD를 이용할 때 유용하게 적용될 방법들을 제공하였다.

Development of Design Program of Regeneratively Cooled Combustion Chamber (재생냉각 연소실 설계 프로그램 개발)

  • Cho, Won-Kook;Seol, Woo-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.102-110
    • /
    • 2004
  • A design code validated against the thermal analysis results of CFD and published RTE code for a regeneratively cooled combustion chamber has been developed. The major function of the code is to predict the regenerative cooling performance and stress of the chamber wall. Adopted are the empirical correlation for the evaluation of the heat transfer coefficient of hot gas and coolant, and theoretical formula for the fin effect of the channel rib. The hot-gas-side wall temperature from the present code shows 100 K difference at most compared to RTE results. It shows less than 10 % difference for the heat flux thrall through the chamber wall and hot-gas-side convective heat transfer coefficient. The major cause of the wall temperature difference is due to the underestimation of the fin effect of the channel rib.

Specific Impulse Variation of a Liquid Rocket Engine by Film Cooling (막냉각에 의한 액체로켓엔진의 비추력 변화)

  • Cho, Won-Kook;Park, Soon-Young;Seol, Woo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.133-139
    • /
    • 2009
  • An analysis has been performed on the specific impulse for a liquid rocket engine of gas generator cycle. The present analysis method has been validated through the comparison of the optimal specific impulse for the 300t thrust conceptual engine against the published data. The engine specific impulse can be increased by applying film coolant decreasing the fuel pump head for regenerative cooling despite the decrease of specific impulse of the combustion chamber when the film coolant participates combustion more than the critical amount. The improved condition shows that higher combustion chamber pressure is achieved with less fuel pump head rise by additional film cooling.

  • PDF

Experimental Studies on Heat Transfer and Pressure Drop Characteristics during Gas Cooling Process of Carbon Dioxide in the Supercritical Region (이산화탄소의 초임계 가스냉각 과정의 열전달 및 압력강하 특성에 관한 실험적 연구)

  • 윤석호;김주혁;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.538-545
    • /
    • 2004
  • This paper presents the experimental data for the heat transfer and pressure drop characteristics obtained during the gas cooling process of carbon dioxide in a horizontal tube. The tube in which carbon dioxide flows is made of copper with an inner diameter of 7.73 mm. Experiments were conducted for various mass fluxes and inlet pressures of carbon dioxide. Mass fluxes are controlled at 225, 337 and 450 kg/$m^2$s and inlet pressures are adjust-ed from 7.5 to 8.8 ㎫. The experimental results in this study are compared with the existing correlations for the supercritical heat transfer coefficient, which generally under-predict the measured data. Pressure drop data agree very well with those calculated by the Blasius' equation. Based on the experimental data, a new empirical correlation to estimate the near-critical heat transfer coefficients has been developed.

Heat calculation in the slotted cooling liner (슬롯형 냉각라이너에서의 열해석)

  • Jeong, Hae-Seung;Hwang, Ki-Young;Yoon, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.642-647
    • /
    • 2010
  • Film cooling is used to protect thermally the inner wall of combustion chamber exposed to hot gas in air-breathing propulsion system and specially film cooling using slotted cooling liner has been investigated to improve the cooling characteristics for a long time. In this paper results from gas dynamic and heat transfer calculations were presented in the combustion area and cooling area of multi-slotted cooling liner.

  • PDF

A Study on Cooling Characteristics of Combustion Gas by Liquid Nitrogen in a Liquid Rocket Engine (액체질소를 이용한 액체 로켓 엔진 연소 가스 냉각 특성 연구)

  • Jeon, Jun-Su;Lee, Yang-Suk;Song, Jae-Kang;Kim, Yoo;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.147-150
    • /
    • 2007
  • In this study, cooling characteristics of combustion gas were investigated by injecting liquid nitrogen into liquid rocket combustion chamber. A injection ring of liquid nitrogen was installed between a combustion chamber and a mixing chamber which was designed for mixing of combustion gas and nitrogen. At first, a ignition test of liquid rocket engine was conducted to verify a stable combustion process and 10 second combustion tests were successfully conducted. The results showed that combustion gas of LRE could be cooled by using liquid nitrogen.

  • PDF