• Title/Summary/Keyword: 가스교환

Search Result 262, Processing Time 0.02 seconds

Behavior of NO3-N and Accompanying Cations Derived from Urea Under Upland Condition -II. Change in the pHs of Soil and Leachate and Fate of Applied Nitrogen (요소유래(尿素由來) NO3-N 및 동반(同伴) 양(陽)이온의 토양(土壤)중 행동(行動) -II. 토양(土壤)과 용탈수(溶脫水)의 pH 변화(變化) 및 시용질소(施用窒素)의 행방(行方))

  • Yun, Sun-Gang;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.1
    • /
    • pp.21-26
    • /
    • 1994
  • Lysimeter experiments were carried out to study the vertical distribution of inorganic nitrogen, the changes in pHs of soil and leachate and the fate of applied nitrogen with or without grass. The concentration of $NO_3-N$ of surface soil(0~20cm) at the rates of 0, 7, 14 and 21kg N/10a ranged from 4 to 13mg/kg, while those of subsurface soi1(20-40cm) were below 10mg/kg at 0, 7 and 14kg N/10a and subsequently increased to 83.8mg/kg at 35kg N/10a. The concentration of $NH_4{^+}-N$ was positively correlated with that of $NO_3-N$ for surface soil(>0.05). However, the concentration of $NH_4{^+}-N$ was negatively correlated with that of $NO_3-N$ for subsurface soil. A positive correlation was observed between $NO_3-N$ and extractable cations of soils. The pH of subsurface soil decreased with the $NO_3-N$ concentration and the N application rate, while that of leachate inereased with the N application rate. The pH differences between subsurface soil and leachate were 2.5 for bare soil and 3.1 for 35kg N/10a. Higher N application rate caused more soil N accumulation and the gas loss and resulted in a larger difference between N uptake by grass and the applied N.

  • PDF

Continuous Positive Airway Pressure during Bronchoalveolar Lavage in Patients with Severe Hypoxemia (심한 저산소혈증 환자에서 기관지폐포세척술 시 안면마스크를 이용한 지속성 기도양압의 유용성)

  • An, Chang Hyeok;Lim, Sung Yong;Suh, Gee Young;Park, Gye Young;Park, Jung Woong;Jeong, Seong Hwan;Lim, Si Young;Oui, Misook;Koh, Won-Jung;Chung, Man Pyo;Kim, Hojoong;Kwon, O Jung
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.1
    • /
    • pp.71-79
    • /
    • 2003
  • Background : A bronchoalveolar lavage(BAL) is useful in diagnosing the etiology of bilateral pulmonary infiltrations, but may worsen the oxygenation and clinical status in severely hypoxemic patients. This study assessed the safety and efficacy of the continuous positive airway pressure(CPAP) using a conventional mechanical ventilator via a face mask as a tool for maintaining the oxygenation level during BAL. Methods : Seven consecutive patients with the bilateral pulmonary infiltrates and severe hypoxemia ($PaO_2/FIO_2$ ratio ${\leq}200$ on oxygen 10 L/min via mask with reservoir bag) were enrolled. The CPAP 5-6 $cmH_2O(F_IO_2\;1.0)$ was delivered through an inflatable face mask using a conventional mechanical ventilator. The CPAP began 10 min before starting the BAL and continued for 30 min after the procedure was completed. A bronchoscope was passed through a T-adapter and advanced through the mouth. BAL was performed using the conventional method. The vital signs, pulse oxymetry values, and arterial blood gases were monitored during the study. Results : (1) Median age was 56 years(male:female=4:3). (2) The baseline $PaO_2$ was $78{\pm}16mmHg$, which increased significantly to $269{\pm}116mmHg$(p=0.018) with CPAP. After the BAL, the $PaO_2$ did not decrease significantly but returned to the baseline level after the CPAP was discontinued. The $SpO_2$ showed a similar trend with the $PaO_2$ and did not decrease to below 90 % during the duration of the study. (3) The $PaCO_2$ increased and the pH decreased significantly after the BAL but returned to the baseline level within 30 min after the BAL. (5) No complications directly related to the BAL procedure were encountered. However, intubation was necessary in 3 patients(43 %) due to the progression of the underlying diseases. Conclusion : In severe hypoxemic patients, CPAP using a face mask and conventional mechanical ventilator during a BAL might allow minimal alterations in oxygenation and prevent subsequent respiratory failure.