• Title/Summary/Keyword: 가수분해 리그닌

Search Result 28, Processing Time 0.029 seconds

Use and Evaluation of Lignin as Ion Exchangers (이온교환체로서 리그닌의 이용과 평가)

  • Ads, Essam.N.;Nada, A.M.A.;El-Masry, A.M.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.86-91
    • /
    • 2011
  • Modified lignins were prepared. Soda and peroxy lignins were precipitated from black liquor produced from bagasse pulping with soda and peroxyacid pulping process. The precipitated lignins were hydrolyzed using 10% HCl. Different functional groups were also incorporated into lignin by carboxylation and phosphorylation reactions. Moreover crosslinking of these lignins were carried out using epichlorohydrin. Characterization of the modified lignins and lignins derivative were carried out using Infrared spectroscopy. Thermal analysis of these compounds were also carried out using TGA and DTA techniques. Efficiency of sorption of metal ions by the modified lignin was also investigated. It was found that, the peroxylignin and its derivatives show higher efficiency toward metal ions uptake than the soda lignin.

Chemical Characteristics of Solid Residues Produced from Acid Hydrolysis of Hybrid Poplar Wood (은수원사시나무의 무기산 가수분해에 의해 생성된 고형 부산물의 화학 구조)

  • Oh, Shinyoung;Kim, Jae-Young;Hwang, Hyewon;Lee, Oh-Kyu;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • In this study, we investigated chemical characteristics of solid residues obtained from inorganic acid hydrolysis of hybrid poplar (Populus alba ${\times}$ glandulosa). Different concentration (72, 36, 18%) of sulfuric acid and hydrochloric acid were used for first hydrolysis step and second hydrolysis step were carried out after equally dilution to 4%. Solid residues after consecutive two step hydrolysis were named to RS72 (Residue from Sulfuric acid 72%), RS36, RS18, as well as RC36 (Residue from hydroChloric acid 36%) and RC18, respectively. The yield of RS decreased from 71.2% to 21.4% with increasing sulfuric acid concentration in the first hydrolysis step, whereas that of RC showed little difference (67.0% to 65.0%), irrespective of hydrochloric acid concentration. The lignin content in solid residue was 23.6% for both of RS36 and RS18, 25.6% for RC36 and 27.3% for RC18, respectively. The results of pyrolyzer-GC/MS showed that 24 cellulose derivatives (Levoglucosan, Furfural) and 21 lignin derivatives (Guaiacol, Syringol) were detected. Thermogravimetric analysis indicated that the yield of char increased and maximum wieght loss rate decreased with increasing lignin portion of solid residue. Therefore, structure of lignin was condensed effectively by sulfuric acid and by high concentration of acid.

Changes of Carbohydrate Composition and Enzyme Adsorption on the Hydrolysis of Steam Exploded Wood by Cellulase (Cellulase에 의한 폭쇄재의 가수분해에 있어서 탄수화물조성 및 효소흡착량 변화)

  • Yang, Jae-Kyung;Kim, Chul-Hwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.67-78
    • /
    • 2001
  • Two species(Quercus mongolica, populus euramericana) of hardwood chips were subjected to steam explosion 25 kg/$cm^2$, for 6 min. The exploded woods were treated by the single or multi-stage chemical process with sodium hydroxide, sodium hypochlorite and sodium chlorite. The multi-stage treatment of exploded wood can be successfully removed lignin. Enzymatic hydrolysis rate of substrate varied from 25% for exploded wood to about 80% for the multi-chemical treated exploded wood. The enzymatic susceptibility was different among wood species. The multi chemical treatment of the exploded wood resulted in the high rate of glucose in the enzymatic hydrolyzate. Cellulase adsorption increased at high lignin content of substrates, while crystallinity, pore area and specific surface area of substrates did not affected enzyme adsorption. According to the proposed pretreatment and saccharification process in this study, it can be acquired about 37~40 kg of glucose from 100 kg of hardwood.

  • PDF

Separation of Wood Components by Acetone (아세톤에 의한 목재 조성분의 분리)

  • Song, Byung-Hee;Ahn, Byoung-Jun;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.230-241
    • /
    • 2010
  • The purpose of this study was to seek the optimum condition for effective separation of the chemical constituents of wood biomass by means of hydrolysis of acetone solution in presence of acid salt as a catalyst. Out of diverse acid salts the catalytic effect of aluminum sulfate ($Al_2(SO_4)_3$) was the most excellent during the hydrolysis of wood biomass in the acetone solution and the optimum concentration was 0.01 M (6.3 wt%). In the condition of mixture ratio of acetone and water to 9 : 1 as well as optimum concentration of aluminum sulfate two wood biomass species, oak wood (Quercus mongolica Fischer) and Pine wood (Pinus densiflora Sieb. et Zucc.), was hydrolyzed for 45 minutes at $200^{\circ}C$ and the degree of hydrolysis was determined to 92.7% and 92.4%, respectively. Extending the reaction time to 60 minutes in the mixture ratio of acetone and water to 8 : 2 the degree of hydrolysis of oak wood was also ca. 92.7%. In the case of Pinus, however, the similar hydrolysis ratio was obtained at $210^{\circ}C$. As the temperature and hydrolysis time increased, the quantitative amount of lignin recovered from the hydrolysate clearly increased, whereas the total amount of carbohydrates in the hydrolysate decreased rapidly. Considering the recoverable amount of lignin and carbohydrate in the hydrolysate, the best condition for the hydrolysis of wood biomasses were confirmed to the mixture ratio of acetone and water to 8 : 2, the concentration of aluminum sulfate of 6.3 wt%, hydrolysis temperature of $190^{\circ}C$ for 60 minutes. In this condition the total amounts of carbohydrate in the hydrolysates of oak wood and pine wood were estimated to 47.6% and 51.4%, respectively. The amount of lignin recovered from the hydrolysates were ca. 18.2% for oak wood and 13.7% for pine wood.

Preparation of Pure Cellulose Substrate from Low-Grade Woods by Autohydrolysis (저급목재의 자기가수분해 전처리에 의한 고순도 셀룰로오스 기질의 제조)

  • Cho, Nam-Seok;Kim, Byoung-Ro;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.8-16
    • /
    • 2002
  • This study was performed to produce the high reactive lignin zero substrates from autohydrolyzed wood resources. In chemical compositions of used raw-materials, there were significant differences between two species, Japanese larch (Larix leptolepis) and oak (Quercus mongolica) woods. Japanese larch contained 25 to 3.5 times higher amounts of extractives than oak wood, which is mainly derived from high content of arabinogalactan in Japanese larch wood. Oak wood has 5% lower lignin content and 3% higher holocellulose and pentosans than larch wood. Concerned to changes in wood components during autohydrolysis pretreatment at 22 kg/cm2 steaming pressure for 5~60 min, glucose content was constant during pretreatment, while hemicellulose and lignin were abruptly changed. Hemicellulose fraction was decreased significantly and lignin contents increased because of its condensation reaction with hemicellulose degradation products. The pH of hydrolyzates during pretreatment was decreased, reached upto pH 3 and since then leveled off. In the case of oak wood, same tendency was observed as in Japanese larch. Autohydrolysis followed by sodium chlorite and sulfite or bisulfite pretreatment was very effective in delignification of the substrates. In particular, two-stage delignification of autohydrolyzed woods with alkali and O2-alkali resulted in very low lignin content substrates, such as 0~0.2% lignin substrate.

Pretreahent and Saccharification of Poplar by Solvent Extraction (유기용매 추출법에 의한 포플라의 전처리 및 당화)

  • 박정극;전영삼
    • KSBB Journal
    • /
    • v.4 no.3
    • /
    • pp.276-280
    • /
    • 1989
  • The effect of the pretreatment by solvent extraction on the saccharification of poplar (Populus euramencana) was studied. The solvent system was Phenol/H2O(Uncatalyzed)and Phenol/H2O/HCl catalyst system. When the poplar was pretreated by uncatalyzed system, the best result of the saccharification was total of 43.9 g/1 reducing sugar produced and 83.5% of carbohydrated conversion was obtained at 19$0^{\circ}C$, 60 minutes. Total wood yield and the lignin removal were 46.3% and 98.2% respectively. The use of acid catalyst was unsuitable to increase he efficiency of saccharification.

  • PDF

Characteristics of Enzymatic Hydrolysis of Sodium Hydroxide pretreated Suwon Poplar (NaOH 전처리된 현사시나무의 효소가수분해 특성)

  • 박영기;오정수
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.2
    • /
    • pp.20-27
    • /
    • 2001
  • An effective method for production of glucose was developed using enzymatic hydrolysis of Suwon poplar by the cellulase. Enzymatic hydrolysis of wood is the reaction to produce glucose from wood using enzyme which derives from microorganism. Glucose can be transferred easily to ethanol by fermentation. Ethanol is the starting material for producing acetone, butanol, citric acid and lactic acid. The mechanism of the enzymatic hydrolysis of cellulose are reasonably explained in terms of the sequential action of three different types of enzymes, endo-cellulase, ex-cellulase, and $\beta$ -glucosidase. The goal of this work was to investigate the cellulose hydrolysis pretreated polar with various concentration NaOH, the crystallinity of cellulose, lignin contents and the degree of hydrolysis.

  • PDF

Bio-ethanol Production from Alkali Prehydrolyzed Yellow Poplar (Liriodendron tulipifera L.) Using Enzymatic Saccharification and Fermentation (알칼리 전처리 백합나무(Liriodendron tulipifera L.)의 효소당화 및 발효에 의한 바이오 에탄올 생산)

  • Shin, Soo-Jeong;Cho, Dae Haeng;Han, Sim-Hee;Kim, Young Hwan;Cho, Nam-Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.305-310
    • /
    • 2009
  • Yellow poplar was selected a promising biomass resources for bio-ethanol production through alkali prehydrolysis, enzymatic saccharification and fermentation using commercial cellulase mixtures (Celluclast 1.5L and Novozym 342 mixtures) and fermenting yeast. In alkali prehydrolysis, 51.1% of Yellow poplar biomass remained as residues, which chemical compositions were 82.2% of cellulose, 17.6% of xylan and 2.0% of lignin. In alkali prehydrolysis process, 96.9% of cellulose, 38.0% of xylan and 5.7% of lignin were remained. Enzymatic saccharification by commercial cellulases led to 87.0% of cellulose to glucose and 87.2% of xylan to xylose conversion. Produced glucose and xylose were fermented with fermenting yeast (Saccharomycess cerevisiae), which resulted in selective fermentation of glucose only to bio-ethanol. Residual monosaccharides after fermentation were consisted to 0.4-1.4% of glucose and 92.1-99.5% of xylose. Ethanol concentration was highest for 24 h fermentation as 57.2 g/L, but gradually decreased to 56.2 g/L for 48 h fermentation and 54.3 g/L for 72 h fermentation, due to the ethanol consumption by fermenting yeast.

Study on the pretreatment of rice hull to enhance enzymatic saccharification (왕겨의 효소 당화 증진을 위한 전처리 방법 연구)

  • Bark, Surn-Teh;Koo, Bon-Cheol;Choi, Yong-Hwan;Moon, Youn-Ho;Cha, Young-Lok;Kim, Jung Kon;An, Gi Hong;Park, Kwang-Geun;Park, Don-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.112.1-112.1
    • /
    • 2011
  • 쌀을 주식으로 하는 우리나라의 여건상 연간 추정치로 싸라기 약 12만톤, 미강 약 49만톤, 왕겨 약 79만톤의 벼 도정 부산물이 발생하고 있다. 본 연구에서는 벼 도정 부산물 중 비식량 자원인 왕겨를 대상으로 고효율 효소 당화를 위한 바이오매스 전처리 방법을 탐색하였다. 왕겨 원시료의 초기 조성은 셀룰로스 34.5%, 헤미셀룰로스 20.5%, 리그닌 25.3%, 회분 14.6%로 나타났는데, 억새 등 초본계 바이오매스와 비교하여 특이하게 높은 성분은 회분으로 이는 벼에 대한 규산질 비료의 시용에서 기인한 것이다. 바이오매스 전처리에 많이 사용되는 암모니아, 희황산 용매와 규산염에 침식성을 가지는 가성소다 용매를 이용하여 각 용매별 단독 및 알칼리-산 복합 처리 하였을 때 효소 가수분해 효율, 고상시료 성분변화 등을 상호 비교하였다. 예비실험을 통하여 암모니아 처리조건은 15%(w/w) $150^{\circ}C$ 20분, 가성소다 처리조건은 1.5%(w/w) $150^{\circ}C$ 20분, 희황산 처리조건은 1.0%(w/w) $150^{\circ}C$ 10분으로 설정하였다. 암모니아 단독, 희황산 단독, 암모니아-희황산 복합 처리 시료의 효소 가수분해 효율은 각각 37.8%, 39.1%, 42.8%로 약 40%선에서 큰 차이가 없었다. 반면 가성소다 단독, 가성소다-희황산 복합 처리시료의 효소 가수분해 효율은 각각 62.7%, 82.8%로 나타나 앞선 3가지 처리방법 대비 50%, 100%에 가까운 효소 가수분해 효율 향상을 보였다. 이 때 전처리 고상시료의 성분 변화를 살펴보면 회분 함량에서 큰 차이를 보였는데 암모니아 단독, 가성소다 단독, 희황산 단독, 암모니아-희황산 복합, 가성소다-희황산 복합 처리에서 각각 47.8%, 77.1%, 43.5%, 55.8%, 94.7%의 회분 성분 기각률(rejection rate)을 나타냈다. 이는 왕겨 효소 가수분해 효율의 최대 저해요인이 회분임을 추정할 수 있다. 왕겨 전처리 알칼리 용매는 암모니아보다 가성소다가 더 효과적이었고 희황산 복합 처리시 그 효과가 크게 상승하였다. 따라서 규산염(회분) 함량이 높은 바이오매스는 고온 고압 조건에서 가성소다 용액으로 처리한 후 그 고상분을 희황산 용액으로 복합 처리하는 시스템이 효소 당화 증진에 매우 유리함을 확인하였다.

  • PDF

The Isolation of D-Xylose from Hardwood and it's Fermentation to Ethanol by Yeasts (활엽수로부터 D-xylose의 분리 및 에탄올 생산)

  • Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.3-13
    • /
    • 1991
  • D-xylose 는 임산 바이오마스의 화학석 조성분 증 셀룰로오스와 리그닌 다음으로 가장 많이 존재하는 성분이다. 그럼에도 불구하고 D-glucose만큼의 연구가 진행되지 못해왔다. 단지 xylitol, furfural 및 xylonic acids탐의 몇가지 산으로 전환시켜 이용될 뿐이다. 이런 이유는 D-xylose를 공업적으로 다량 추출하는 방법과, 특히 정선 방법에 어려운 문제점이 있기 때문이다. 그러므로 본 총설에서는 D-xylose를 보다 경제적으로 분리하는 방법과 D-xylose를 에탄올로 발효시키는 과정중의 제 문제점들에 관해 기존에 발표된 논문들을 정리하고저 한다. 즉 공업적으로 D-xylose를 다량 분리시키는 방법으로서 해섬/추출 폭쇄/추출, 초산펄핑, 전기가수분해 방법들이 논의 되었으며, 분리된 D-xylose를 에탄올로 발효시킬 경우 D-xylose의 대사, 발효 조건들의 영향, 헤미셀룰로오스 가수분해물의 발효, 발효의 전망과 문제점등이 포함되었다.

  • PDF