• 제목/요약/키워드: 가솔린 엔진

검색결과 400건 처리시간 0.032초

천연가스 전소엔진과 가솔린엔진의 성능과 배출가스 특성비교 (The Comparison of Performance and Emission Characteristics between CNG Engine and Gasoline Engine)

  • 김진영;박원옥;정성식;하종률
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.16-21
    • /
    • 2003
  • Natural gas is one of the promising alternative fuels because of the abundant deposits and the cleanness of emission gas. It can be used in conventional gasoline engine without major modification. Natural gas has some advantages than gasoline i.e. the high octane number, good mixing condition because of gas and wide inflamable limit. In the present study, a $1.8{\ell}$ conventional gasoline engine is modified for using the CNG as a fuel instead of gasoline. Performance and emission characteristics are compared between gasoline and CNG with 4 cylinder SI Engine which is controlled by programable ECU. Parameters of experimentation are equivalence ratio, spark timing and fuels. We analyzed the combustion characteristics of the engine using the cylinder pressure i.e. ignition delay, combustion duration and cycle variation. As a result, CNG engine shows lower exhaust emissions but brake torque is slightly reduced compared to gasoline engine. Overall combustion duration is longer than that of gasoline because of lower burning speed.

소형 가솔린 가시화엔진의 내부유동 특성연구 (Characterization of In-Cylinder Flow of a Small Gasoline Optical Engine)

  • 김종선;정경석;정인석;조경국
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.87-95
    • /
    • 1995
  • A commercial DOHC four valve engine was modified to make a single-cylinder optical model engine with replaceable head. Three kinds of head were used to generate swirl, tumble, and combined swirl/tumble motion. Schlieren visualization technique was applied to characterize the in-cylinder flow qualitatively. Particle Image velocimetry has been developed and applied for the quantitative flow measurements. Axial and tangential flow motion inside the cylinder has been characterized. The swirl/tumble port shows beneficial results in terms of turbulence generation for the initial flame propagation and mean swirl motion for the overall flame propagation.

  • PDF

스월형 GDI 엔진의 연소실내 현상 연구 (In-Cylinder Phenomena in a Swirl Type GDI Engine)

  • 김기성;박상규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.75-90
    • /
    • 2001
  • For the purpose of helping development of a GDI(Gasoline Direct Injection) engine, the in-cylinder phenomena, such as the spray behaviors and fuel distributions, unburned fuel, and flame characteristics were investigated in a single cylinder GDI engine. The GDI engine was equipped with a swirl type electronic injector and SCV(Swirl Control Valve). PLIF(Planar Laser Induced Fluorescence) system with KrF Excimer laser was used for the measurements of the fuel distributions. The effects of the injector specifications, such as the spray cone angle and the offset angle on the fuel distributions and combustion characteristics were investigated. As a result, it was found that the injected fuel spray collided with the bottom of the bowl and moved upward along the exhaust side wall of the piston bowl. This fuel vapor played a important role in the instance of spark ignition. The injector specifications has a great influence on the flame characteristics.

  • PDF

가솔린엔진의 금속면온도 및 냉각수로의 전열 특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of Metal Temperature and Heat Rejection to Coolant of Gasoline Engine)

  • 오창석;유택용;신승용;최재권
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.35-41
    • /
    • 2001
  • In recent applications, map controlled thermostat has been adapted to optimize engine cooling system and vehicle cooling system. First of all, this strategy is focused on improving fuel consumption rate and reducing emissions, especially unburned hydrocarbon. The object can be obtained through controlling engine metal temperature by varying engine coolant temperature with engine load and speed. To achieve this goal, it is necessary to understand the characteristics of engine metal temperature and heat rejection rate to coolant. From the results of tested engines, it is obvious that fuel consumption rate has more dominant effect on engine metal temperatures than the corresponding engine power does. Also, Re-Nu relation which shows heat rejection rate to coolant in function of air-fuel mixture and engine specifications has been studied. Also, the empirical Re-Nu relation at full loaded engine was developed.

  • PDF

노외용 소형엔진 인젝터의 분무특성에 대한 실험적 연구 (Experimental Study on the Spray Characteristics of a Fuel Injector for a Non-Road Small Engine)

  • 염경민;박성영
    • 한국산학기술학회논문지
    • /
    • 제12권5호
    • /
    • pp.2005-2010
    • /
    • 2011
  • 최근 배기 규제가 자동차 엔진에 국한되지 않고 노외용 소형엔진 부분에서도 세계적으로 강화됨에 따라, 배기규제에 대응하기 위하여 기존 노외용 소형엔진의 기화기 방식에서 벗어나 전자연료 분무방식으로의 전환이 필요하게 되었다. 본 연구에서는 400cc 가솔린 엔진용 인젝터의 연료공급 특성을 실험적으로 분석하였으며, 이를 토대로 소형엔진에 적합한 인젝터를 선정하였다. 분무질량분포 측정장치를 통하여 3홀 및 6홀인젝터의 분무질량분포 특성을 분석하였다. 가시화 실험 장치를 통하여 각 인젝터의 분무각, 분무도달거리 및 분무폭을 분석하였다. 분무질량분포 실험 및 분무 가시화 실험을 통하여 분무특성이 우수하고 안정적인 분무를 형성하는 6홀 인젝터를 소형엔진용으로 선정하였다.

바이오연료의 엔진 적용을 위한 실험적 기초연구 (Basic Experimental Study on the Application of Biofuel to a Diesel Engine)

  • 염정국
    • 대한기계학회논문집B
    • /
    • 제35권11호
    • /
    • pp.1163-1168
    • /
    • 2011
  • 압축착화 방식의 디젤엔진은 스파크점화 방식의 가솔린 엔진에 비하여 열효율이 높아 연비가 향상되고 그 결과 $CO_2$ 저감효과도 높다. 또한 디젤엔진은 점화계통 장치의 불필요 등 기존 엔진의 개조비용이 적어 세탄가가 높은 바이오연료의 적용엔진으로서 적합한 장점이 있다. 따라서 본 연구에서는 식물성 자트로파유, 대두유 2종의 바이오연료와 경유연료의 분무특성을 비교 분석하였다. 실험변수로서는 분사압력과 자트로파 연료의 경우는 혼합비율(BD3, BD5, BD20)을 달리하였다. 분사압력은 500bar, 1000bar, 1500bar 및 1600bar로 설정하고 분사기간은 500ms로 동일하게 하였다. 본 연구의 결과로서, 사용한 바이오디젤 연료의 종류 및 분사압력 변화에 대한 분무거동특성(분무각)의 변화는 뚜렷하지 않으나, 고압분사의 경우가 분무각이 약간 감소하는 결과를 얻을 수 있었다.

수소 예혼합 가솔린 직접분사 엔진의 혼소특성에 관한 수치해석 연구 (A Study of Numerical Analysis on Mixed Combustion Characteristics in a Gasoline Direct Injection Engine with Premixed Hydrogen)

  • 배재옥;최민수;서현욱;전충환
    • 한국수소및신에너지학회논문집
    • /
    • 제24권6호
    • /
    • pp.524-534
    • /
    • 2013
  • Gasoline direct injection(GDI) engine has a high thermal efficiency, but it has a problem to increase carbon emissions such as soot and $CO_x$. In this study, the objective is to analyze numerically a problem for adding the hydrogen during the intake stroke so as to reduce the injected amount of gasoline in GDI engines. For selection of the base model, the cylinder pressure of simulation is matched to experimental data. The numerical analysis are carried out by a CFD model with the hydrogen addition of 2%, 3% and 4% on the volume basis. In the case of 3% hydrogen addition, the injected gasoline amount is only changed to match the maximum pressure of simulation to that of the base model for additional study. It is found that the combustion temperature and pressure increase with the hydrogen addition. And NO emission also increases because of the higher combustion temperature. $CO_x$ emissions, however, are reduced due to the decrease of injected gasoline amount. Also, as the injected gasoline amount is reduced for the same hydrogen addition ratio, the gross indicated work is no significant, But NO and $CO_x$ emissions are considerably decreased. On the order hand, $CO_x$ emissions of two cases are more decreased and their gross indicated works are higher obtained than those of the base model.

직분식 가솔린엔진에서 피스톤 형상이 연료 혼합기의 형성과 거동에 미치는 영향 . (Effect of Piston Cavity Geometry on Formation and Behavior of Fuel Mxture in a DI Gasoline Engine)

  • 김동욱;강정중;최경민;김덕줄
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.82-89
    • /
    • 2005
  • This study was performed to investigate the behavior and spatial distribution of fuel mixtures with different wall angle and diameter of piston cavity in a DI gasoline engine. The spatial distribution of fuel mixtures after impingement of the spray against a piston cavity is one of the most important. factors for the stratification of fuel mixture. Thus, it is informative to understand in detail the behavior and spatial distribution of fuel mixtures after impingement in the cavity. Two dimensional spray fluorescence images of liquid and vapor phase were acquired to analyze the behavior and distribution of fuel mixtures inside cylinder by exciplex fluorescence method. The exciplex system of fluorobenzene/DEMA in non-fluorescing base fuel of hexane was employed. Cavity wall angle was defined as an exterior angle of piston cavity. Wall angles of the piston cavity were set to 30, 60 and 90 degrees, respectively. The spray impinges on the cavity and diffuses along the cavity wall by its momentum. In the case of 30 degrees, the rolling-up moved from the impinging location to the round and fuel-rich mixture distributed at periphery of cylinder. In the case of 60 and 90 degrees, the rolling-up recircurated in the cavity and fuel mixtures concentrated at center region. High concentrated fuel vapor phase was observed in the cavity with 90 degrees. From. present study, it was found that the desirable cavity wall angle with cavity diameter for stratification in a Dl gasoline engine was demonstrated.

하이브리드용 가솔린 엔진에서 최적 EGR적용 및 실린더간 편차에 따른 성능 및 배출가스 특성 분석 (Analysis of Performance and Emissions Characteristics on Gasoline Engine for Hybrid Vehicles with Optimum EGR Rate and the Cylinder Variation of EGR Rate)

  • 박철웅;최영;김창기
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.87-95
    • /
    • 2009
  • EGR(Exhaust gas recirculation) provides an important contribution in achieving the development targets of low fuel consumption and low exhaust emission levels on gasoline engine for hybrid vehicles while allowing stoichiometric fuelling to be retained for applications using the three-way catalysts. However, the occurrence of excessive cyclic variation with high EGR normally prevents substantial fuel economy improvements from being achieved in practice. Therefore, the optimum EGR rate in gasoline engine for hybrid vehicles should be carefully determined in order to achieve low fuel consumption and low exhaust emission. In this study, 2 liters gasoline engine with E-EGR system was used to investigate the effects of EGR with optimum EGR rate on fuel economy, combustion stability, engine performance and exhaust emissions. As the engine load becomes higher, the optimum EGR rate tends to increase. The increase in engine load and reduction in engine speed make the fuel consumption better. The fuel consumption was improved by maximum 5.5% at low speed, high load operating condition. As the simulated EGR variation on a cylinder is increased, due to the increase in cyclic variation, the fuel consumption and emissions characteristics were deteriorated simultaneously. To achieve combustion stability without a penalty in fuel consumption and emissions, the cylinder-to-cylinder variations must be maintained under 10%.

LIEE와 Mie 산란 방법을 이용한 직분식 가솔린 엔진의 스월 및 슬릿 인젝터의 분무 특성 (The Spray Characteristics of Swirl and Slit Injector to DISI Engine Using LIEF and Mie-scattering Method)

  • 이기형;황규민;이창희
    • 대한기계학회논문집B
    • /
    • 제29권3호
    • /
    • pp.356-367
    • /
    • 2005
  • The spray characteristics of DISI injector have a great role in gasoline engine efficiency and emission. Thus, many researchers have studied to investigate the spray characteristics of swirl and slit injectors that are used in a DISI engine. In this study, we tried to provide spray parameters, which affect on the spray characteristics such as injection pressure, ambient pressure and ambient temperature. In addition, we calculated $t_{b}\;and\;t_{c}$ to investigate the break up mechanism of test injectors and obtained $C_{v}$ to evaluate the spray characteristics. As the ambient pressure increases in case of slit injector, $C_{v}$ decreases. The laser-induced exciplex fluorescence (LIEF) technique, which is based on spectrally resolved two-color fluorescent emissions, has applied to measure the liquid and vapor phases for on evaporating spray simultaneously. The TMPD/naphthalene proposed by Melton is used as a dophant to detect exciplex signal. The temporal and spatial distribution of liquid and vapor phases during the mixture formation process was measured by this technique. In the LIEF technique, the vapor phase is detected by the monomer fluorescence while the liquid phase is tracked by the exciplex fluorescence. From this experiment, we found that the spray area of the vapor phase is increased with elapsed time after injection and the area of liquid is decreased when the ambient pressure is 0.1MPa. However, the area tends to increase until the end of injection when the ambient pressure is 1.0MPa.