• Title/Summary/Keyword: 가솔린

Search Result 798, Processing Time 0.022 seconds

Optical Diagnostics for Combustion Phenomena in a Gasoline Engine (가솔린엔진의 광응용 연소계측 기술)

  • 이기형;이창식
    • Journal of the KSME
    • /
    • v.33 no.12
    • /
    • pp.1052-1062
    • /
    • 1993
  • 지금까지 엔진내의 연소현상에 관한 많은 문헌들이 보고되고 있으나, 주로 계측기술에 관한 전 반적인 소개 내용이 많으며, 실제 엔진에 대한 적용 현황과 적용시 발생하는 문제점 및 해결책 등에 대한 보고는 많지않은 실정이다. 이 글에서는 필자가 경험한 계측과 가시화 기술을 중심으 로 엔진내의 연소현상 해석에 적용되는 최근의 광응용 계측기술 및 개발 동향을 소개하고자 한다.

  • PDF

Powerful sparkplug (고성능 점화전)

  • 김세영
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.26-34
    • /
    • 1991
  • 내연기관 가솔린엔진에서 점화전은 매우 중요하다. 그것은 2만볼트의 스파크를 흘려 혼합기를 연소시키기 때문이다. 본 고는 통상의 스파크화염보다 수십배 더 큰 화염의 생성을 이루는 몇가지 방법과 그것이 엔진에 미치는 영향들을 분석 제시하여 어느 한 요소가 향상한다고 할 때 혹 타 부문에 여타 영향을 주는지의 여부도 함께 고찰하여 실제로 사용할 수 있는 기술로서의 검토를 함이다.

  • PDF

가연성 액체물질 보관용기의 화재예방

  • Park, Il-Geun
    • 방재와보험
    • /
    • s.118
    • /
    • pp.48-51
    • /
    • 2007
  • 본 고에서는 상온일 때 액체상태가 됨에 따라 포화증기압이 1bar 이하가 되는 물질의 보관에 대해 알아보고자 한다. 대체적으로 증류된 석유제품들(가솔린, 나프타, 케로신, 디젤이 그러하다. Zalosh의 '산업화재 예방공학(Indusrtial Fire Protection Engineering)' 과 Crowl의 '폭발의 이해(Understanding Explosions)' 를 통해 많이 다루어져왔던 내용이다.

  • PDF

MTBE: a gasoline blending stock (휘발유 배합재로서의 MTBE)

  • 조용우;김경원;나상천
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.25-34
    • /
    • 1991
  • 휘발유는 가솔린엔진을 구동하기 위한 에너지원으로서, 원유로부터 정제된 탄화수소 혼합물을 주성분으로 하고 알콜, 에테르와 같은 함산소화합물이나 특정 성능을 보완해주기 위한 첨가제 등이 배합되기도 한다. 본 고에서는 최근 환경오염방지와 관련하여 휘발유 배합재로 각광받고 있는 MTBE의 전반적인 특성과 MTBE가 배합된 휘발유의 차량에서의 실용 성능에 관해 살펴보고자 한다.

  • PDF

The Effect of Injection Timing and Cavity Geometry on Fuel Mixture Formation in a Central Injected DI Gasoline Engine (중앙 분사방식의 직분식 가솔린 기관에서 연료 혼합기 형성에 미치는 분사시기와 캐비티 형상의 영향)

  • 김태안;강정중;김덕줄
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.32-38
    • /
    • 2004
  • This study was performed to investigate the behavior of liquid and vapor phase of fuel mixtures with different piston cavity diameters in a optically accessible engine. The conventional engine was modified as Central Injected DI gasoline engine with swirl motion. Two dimensional spray fluorescence images of liquid and vapor phase were acquired to analyze spray behavior and fuel distribution inside of cylinder using exciplex fluorescence method. Piston cavity geometries were set by Type S, M and L. The results obtained are as follows. In the spray formation after SOI, the cone angle and width of the spray were decreased at late injection timing. With a fuel injection timing of BTDC $180^{\circ}C$, fuel was not greatly affected in a piston cavity but generally distributed as homogeneous mixture in the cylinder. With a fuel injection timings of BTDC $90{\circ}C$ and $60^{\circ}C$, fuel mixture was widely distributed in near the cavity center. As a injection timing was late in the compression stroke, residual width of fuel mixture was narrow in proportion to piston cavity.

An Optimization of 11kW Gas Engine for Distributed Energy Source Modified from Gasoline Engine (가솔린엔진을 개조한 분산전원용 11kW급 천연가스엔진의 성능 최적화)

  • Lee Youngae;Pyo Youngdug;Kim Gangchul;Oh Sidoek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.96-101
    • /
    • 2005
  • Cogeneration is an energy conversion process, where electricity and useful heat are produced simultaneously in one process. Also, carbon dioxide emissions can be reduced as well. The cogeneration process may be based on the use of steam, gas turbines or combustion engines. However, there have been few models with an output of less than 100 kilowatt. In the present study, a spark ignited gas engine with generation output of 10 kilowatts was developed for micro cogeneration package. The gas engine shows 29.2$\%$ of thermal efficiency under Stoichiometric combustion and 33.6$\%$ of thermal efficiency under lean combustion. NOx emission shows less than 10ppm at 13$\%$ oxygen under stoichiometric combustion and about 100ppm at 13$\%$ oxygen under lean combustion.

POWER AND ENERGY STORAGE DEVICES FOR NEXT GENERATION HYBRID ELECTRIC VEHICLE (차세대 복합형 전기자동차의 전력 및 에너지 저장장치)

  • Kim, Min-Huei
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.1 no.1
    • /
    • pp.31-41
    • /
    • 1998
  • Fuel conservation and environmental pollution control are the principal motivating factors that are urging at present widespread research and development activities for electric hybrid vehicles throughout the world. The paper describes different possible energy storage devices, such as battery, flywheel and ultra capacitor, and power sources, such as gasoline engine, diesel engine, gas turbine and fuel cell for next generation hybrid electric vehicle. The technology trend and comparison in energy storage and power devices indicate that battery and gasoline engine, respectively will remain the most viable devices for hybrid vehicle at least in the near future.

  • PDF

Emission Characteristics for the MTBE Gasoline Engine (MTBE 가솔린기관의 배기가스 특성에 관한 연구)

  • 노병준;이삼구;김규철
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.32-37
    • /
    • 2001
  • This article is to provide reasonably accurate vehicle emission estimates for the four sampled fuels which are commercially available across the nation. Emission quantities are obtained by testing a vehicle on a chassis dynamometer and capturing a sample of the emissions from the tailpipe in vehicle. The vehicle is driven following a particular pattern of idle, acceleration, cruise, and deceleration. Shown here is the trace of the test cycle known as the CVS-75 Mode which is used to certify the emission performance standards. The mode of CVS-75 consists of a cold start cycle, a hot stabilized cycle, and a hot start cycle. Emissions for the pollutants are measured in vehicle testing. These are carbon monoxide (CO), oxides of nitrogen (NOx), and total hydrocarbon (THC). The test results summarized in this report indicate that the differences for the amount of emission are quantitatively minimal.

  • PDF

Knocking and Combustion Characteristics at Rich Limit of Gasoline HCCI Engine (가솔린 예혼합 압축 착화 엔진의 농후 한계에서 연소와 노킹 특성)

  • Yeom, Ki-Tae;Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.9-16
    • /
    • 2006
  • Variable valve timing is one of the attractive ways to control homogeneous charge compression ignition (HCCI) engine. Hot internal residual gas which can be controlled by variable valve timing(VVT) device, makes fuel evaporated easily, and ignition timing advanced. Regular gasoline was used as main fuel and di-methyl ether(DME) was used as ignition promoter in this research. HCCI engine operating range is limited by high combustion peak pressure and engine noise. High combustion pressure can damage the engine during operation. To avoid engine damage, the rich limits have to define using various methods. Peak combustion pressure, rate of cylinder pressure rise was considered to determine rich limit of engine operating range. Knock probability was correlated with the rate of cylinder pressure rise as well as the peak combustion pressure.

A study on the characteristics of gasoline spray to impinge on wall (벽면에 충돌하는 가솔린 분무의 특성에 관한 연구)

  • Lee, G.Y.
    • Journal of ILASS-Korea
    • /
    • v.10 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • Even though a relatively complete knowledge base has been established for diesel sprays, much of the knowledge cannot be directly translated to correlate the characteristics of gasoline spray. The macroscopic characteristics of gasoline impingement spray was investigated with photographic and image processing technique by Particle Motion Analysis System. The injector with single hole nozzle diameter of 0.28 mm was used in this experiment and the injection duration was selected as 10 msec. The injection pressure with 0.3, 0.35, and 0.4 MPa, impingement distance or 70, 100 and 130m, impingement angle or 0.15, 30 and $45^{\circ}$ were employed for the variables to affect the spray characteristics of impinging spray. It is clear that there is the analogy on the spray tip penetration between the gasoline impinging jet and diesel free jet. The spray tip penetration of impinging gasoline spray is proportional to the quarter power of the time after start of injection. The maximum height of impinging gasoline spray is also proportional to the quarter power of the time regardless of impingement distance, impingement angle and injection pressure. In addition, the effect of impingement angle on the spray tip penetration is significant according to the time after start of injection, even though there is minor effect in the initial stage of time after start of injection. Moreover, there is no remarkable effect of injection pressure on the spray tip Penetration under the experimental condition used in this study.

  • PDF