• Title/Summary/Keyword: 가솔린엔진

Search Result 400, Processing Time 0.043 seconds

Study of Failure Examples for Emission Gas Control System in Gasoline Engine (가솔린 엔진 배출가스 제어장치에 대한 고장사례 고찰)

  • Lee, Il Kwon;Lee, Jong Ho;Lee, Young Suk;Youm, Kwang Wook;han, Jae Oh;Lim, Ha young
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.37-42
    • /
    • 2016
  • The purpose of this paper is to study for the emission gas control of passenger car. The first example, the PCSV never open when operating condition, but it opened by causing malfunction because of trouble. As a result, the purge gas entered into surge tank, a mount of fuel was displayed with excessive supply on tester. Therefore, it certified the bad-condition of the engine when idling by decreasing of fuel injection quantity from engine ECU. The second example, the hose activating a EGR valve didn't supply the vacuum pressure because of assembling the other part. Thus, it knew the bad-condition of engine that the EGR valve would not work normally by leaking with the other port. The third example, as the rear oxygen sensor of two sensor were fault-installing by changing the sensor of other a car it could not detect of oxygen quantity. Finally, it found the phenomenon of abruptly decreasing vehicle speed when braking a car. Therefore, the system including with emission control has to drastically manage by maximizing condition to role decreasing the emission gas.

Effects of Port Fuel Injection Characteristics upon HC Emission in SI Engines (연료 분사 특성이 가솔린 엔진 HC 배출특성에 미치는 영향)

  • Woo, Young-Min;Bae, Choong-Sik;Lee, Yong-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.796-801
    • /
    • 2001
  • During cold operation period, fuel injection system directly contributes the unburned hydrocarbon formation in spark ignition engines. The relationship between injection parameters and HC emission behavior was investigated through a series of experiments. Spray behavior of port fuel injectors was characterized through a quantitative evaluation of mass concentration of liquid fuel by a patternator and PDA. 6-hole injector was found to produce finer spray than single hole one. Using a purpose-built test rig, the wall wetting fuel was measured, which was mostly affected by wall temperature. Varying coolant temperature($20{\sim}80^{\circ}C$), HC emissions were measured in a production engine. With respect to the different types of injectors, HC emission was also measured. In the 6-hole injector application, the engine produced less HC emission in low coolant temperature region. Though it produces much more amount of wetting fuel, it has the advantages of finer atomization quality. In high coolant temperature region, there was little effect between different types of injectors. The control schemes to reduce HC emissions during cold start could be suggested from the findings that the amount of fuel supply and HC emission could be reduced by utilizing fine spray and high intake wall temperature.

  • PDF

Lean Combustion Characteristics in a S.I Engine with SCV by Operating Conditions (SCV 가솔린 엔진의 운전조건에 따른 희박연소 특성)

  • Choi, Su-Jin;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.161-168
    • /
    • 2000
  • Lean combustion in a SI engine is one of the best solution for the improvement of fuel economy and reduction of pollutant emission. In order to access a lean combustion engine, stable combustion at lean AlF ratio is needed. In this paper, the effect of fuel injection timing on lean misfire limit has been investigated in an MPI engine. To investigate the interaction of injection timing and intake flow characteristics, three different swirl generating SCV(swirl control valve) configurations were considered, and investigated their effects on lean misfire limit and torque at full load operation. Also the effects of spark timing on lean combustion has been investigated. Lean combustion has been examined and the results are reported in this paper. SCV B has been developed to satisfy the requirements of sufficient swirl generation to improve lean combustion and stable performance. It is found that injection timing, spark timing and intake air motion govern the stable lean combustion.

Effect of Value Timing on Residual Gas Fraction and Combustion Characteristics at Part Load Condition in an SI Engine (가솔린 엔진의 밸브타이밍 변화가 부분부하 조건에서 잔류가스량 및 연소특성에 미치는 영향)

  • 김철수;송해박;이종화;유재석;조한승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.26-33
    • /
    • 2000
  • In-cylinde flow and mixture formation are key contributors to both idle stability and combustion stability at part load condition in SI engine. The real time measurements of air-fuel ration and in- cylinder residual gas fraction are particularly important to obtain a better understanding of the mechanisms for combustion and emissions especially during cold start and throttle transient condition. This paper reports the cycle resolved measurements of residual gas fraction and equivalence ration near speak plug with value timing change and their effects on combustion characteristics at part load. The results showed that the effect of intake value opening on the residual gas fraction was smaller than that of exhaust valve closing because of the decreases of exhaust gas reverse flow from exhaust port. The variation of equivalence ratio near spark plug increased with the increase of value overlap and it closely related with heat release rate and combustion stability

  • PDF

Computational and Experimental Analysis of Variable Exhaust Pipe Diameters in Four-Stroke Gasoline Engine (4 행정 가솔린 엔진 내의 다양한 배기 파이프 직경 변화에 따른 실험과 수치해석)

  • Choi, Seuk-Cheun;Lee, Hae-Jeong;Shin, You-Sik;Chung, Han-Shik;Jeong, Hyo-Min;Lee, Kwang-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.684-689
    • /
    • 2004
  • In this study, a experimental method has been introduced for the various exhaust pipe geometry of 4-stroke single cylinder engine. The main experimental parameters are the variation of exhaust pipe diameters and lengths, to measuring the pulsating flow when the intake and exhaust valves are working. As the results of experimental test, the various exhaust geometry were influenced strongly on the exhaust pressure. As the exhaust pipe diameter was decreased, the amplitude and the number of compression wave in exhaust pressure was increased. According to decreasing pipe diameter, the number of compression wave in exhaust pressure was decreased. When the pipe diameter was increase, the second amplitude was increased.

  • PDF

A Study on Cyclic Variation by Idling in Gasoline Vehicle (가솔린자동차의 무부하 운전에서 사이클변동에 관한 연구)

  • Han, Sung-Bin;Kim, Sung-Mo
    • Journal of Energy Engineering
    • /
    • v.18 no.3
    • /
    • pp.156-162
    • /
    • 2009
  • Cylinder-pressure based combustion analysis provides a mechanism through which a combustion researcher can understand the combustion process. This paper was to identify the most significant sources of cycle-to-cycle combustion variability in a spark ignition engine at idle. To analyse the cyclic variation in the test engine, the burn parameters are determined on a cycle-to-cycle basis through analysis of the engine pressure data. The burn rate analysis program was used in the analysis of the data. Burn parameters were used to determine the variations in the input parameter-i.e., fuel, air, residual mass, and so on.

Simulation-based Intake Manifold Runner Length Optimization for Improving Performance, Fuel Consumption and Emission of a Gasoline Engine (가솔린 엔진의 성능, 연비, 배출 가스를 동시에 고려한 시뮬레이션 기반 흡기 다기관 길이 최적화)

  • Kang, Yong-Hun;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.62-67
    • /
    • 2010
  • Exhausting fossil fuel and increasing concern of air pollution have brought on the change of the focus of developing new vehicles from performance to fuel economy and emission. The gasoline engines adopting the naturally aspirated way use the throttle-body for engine load control. Therefore, its pumping loss increases more than that of the diesel engine, and also mostly operating in a partial load condition has bad influence on fuel economy and emission. In these days, the continuous variable valve timing system and variable induction system are adopted in order to improve fuel consumption and emission. In this study, we optimize the runner length and operate region of variable induction system to simulataneously improve the performance, fuel economy, and emission of gasoline engine with employing GT-Power as a CAE tool for engine analysis and PIAnO as PIDO tool for process integration and design optimization.

A Study on the Effects of EGR with Syngas Addition in a Gasoline Engine (가솔린 엔진에서 합성가스 첨가량에 따른 EGR 효과에 대한 연구)

  • Yun, Young-Jun;Choi, Young;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.159-164
    • /
    • 2007
  • The purpose of this study is to reduce harmful emission gases in the range of stable combustion without loss of a thermal efficiency. Therefore, effects of both exhaust gas recirculation(EGR) and synthetic gas addition on engine performance and emission were investigated in a gasoline engine. Synthetic gas(syngas), which is in general prepared from reforming gasoline, was utilized in order to promote stable combustion. The major components of syngas are H2, CO and $N_2$ gases. The percentage of syngas addition was changed from 0 to 30% in energy fraction and EGR rate was varied up to 30%. As a result, $COV_{IMEP}$ as a parameter of combustion stability was decreased and THC/$NO_X$ emissions were reduced with the increase of syngas addition. And $COV_{IMEP}$ was increased with the increase of EGR but $NO_X$ emission was greatly reduced. In addition, under the region where the EGR rate is around 20%, thermal efficiency was improved.

The Trend and perspective of Automotive Technology deveolpment for the Later part of 1980s. -Based on product engineering- (1980년대 후반의 자동차기술개발 동향 및 전망 -제품기술을 중심으로-)

  • 신현동
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.3
    • /
    • pp.1-10
    • /
    • 1985
  • 한국의 자동차산업은 생산능력이 경제단위로 들어서고, 수출을 통해 선진국 자동차산체와 세계시 장에서 경합을 하지 않으면 안 될 성년기에 접어들고 있다. 따라서 경험적 강화를 위해서는 생 산단위의 증가 뿐만 아니라 자체기술개발능력도 향상해야 한다. 기술개발의 첫째 화제가 현재 외국으로부터 기술도입한 제품의 자체개발이 대상으로 된다는 것은 재론의 여지가 없다. 그러나, 앞으로 제품개발을 해 나가는데 수반되는 기술개발을 효과적으로 하기 위해서는, 선진자동차산 업의 기술개발동향과 Marketing차원에서 시장변활를 연밀히 분석, 검토함으로써 기술개발과제를 중점적으로 선택하고, 연구설비투자와 연구인력을 성별투입해야 할 것이다. 이런 관점에서 최 근의 자동차기술 개발동향을 개관하고 1980년대 후반의 개발동향을 전망해 보고자 한다. 자동차 제품기술은, 첫재 석유와 원재로, 부품, 노동력의 가격상승과 둘재 환경, 안전도, 연비면의 규제 강화, 셋째 사용자의 편이 안락한 문전의 추구라고 하는 세가지 주요인의 이호연관에 의해 그 개발방향이 결정된다고 할 수 있다. 현재, 미,일 자동차업체는, 가솔린 및 디젤 왕복내연기관 의 기존 동력원과 FF, FR 및 4WD의 기존구동방식을 유지하면서, 엔진 등 주요기능부품의 최적 제어와 운전자의 편이성향상 및 운전정보 제공을 위한 전자기술의 적용, 경량재질 및 세라믹스 등의 신소재 적용, 실용화, 그리고 유가상승에 대비한 대체연료의 개발연구를 주개발과제로 삼고 있으며, 이 주세는 80년대 후반까지 지속될 것으로 보여진다.

  • PDF

Characteristics of the Gasoline Spray near Impinging Wall in Suction Flow (흡입유동 중 충돌벽면 근처에서 가솔린 분무특성)

  • Kim, Won-Tae;Kang, Shin-Jae;Rho, Byung-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1285-1293
    • /
    • 2000
  • In port fuel injection system of SI engines, injected fuel is impinged onto the surface of intake valves and port-wall, and then formed the wall flow under the cold start operation. Wall flows entrained into the cylinder result in the unsteady and nonuniform mixture formation. Therefore, the spray impingement to the wall is considered as having negative influences such as lowering combustion efficiency and causing unburned hydrocarbon emissions. This study investigates the spray characteristics of the wall impinging air-assist spray in suction air flow. A PDPA was used to analyze the flow characteristics under the different conditions such as impingement angle and supplied air. Experimental data concerning the impinging sprays has been obtained in the vicinity of the wall. Measured droplets divided into the pre-impinging droplets which denote as the positive normal velocities and post-impinging droplets that describe as the negative normal velocities for the suction flow. Their velocities, size distributions and SMD are comparatively analyzed before and after the impingement.