• Title/Summary/Keyword: 가속 모형

Search Result 279, Processing Time 0.024 seconds

Development of Rutting Model for Asphalt Mixtures using Laboratory and Accelerated Pavement Testing (실내 및 포장가속시험를 이용한 아스팔트 혼합물의 소성변형 모형 개발)

  • Lee, Sang-Yum;Lee, Hyun-Jong;Huh, Jae-Won;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.79-89
    • /
    • 2008
  • The pavement performance model is the most important factor to determine the pavement life in the mechanistic-empirical pavement design guide (MEPDG). As part of Korean Pavement Research Program (KPRP), the Korean Pavement Design Guide (KPDG) is currently being developed based on mechanistic-empirical principle. In this paper, the rutting prediction model of asphalt mixtures, one of the pavement performance model, has been developed using triaxial repeated loading testing data. This test was conducted on various types of asphalt mixtures for investigating the rutting characteristics by varying with the temperature and air void. The calibration process was made for the coefficients of rutting prediction model using the accelerated pavement testing data. The accuracy of prediction model can be increased when by considering the effect of individual rutting properties of materials rather than shear stresses with depths.

  • PDF

The Acclerated Life Test of Hard Disk In The Environment of PACS (PACS 환경에서 하드디스크의 가속 수명시험)

  • Cho, Euy-Hyun;Park, Jeong-Kyu;Chae, Jong-Gyu
    • Journal of Digital Contents Society
    • /
    • v.16 no.1
    • /
    • pp.63-70
    • /
    • 2015
  • In this paper, we estimate the life cycle from acceleration life test about the hard disk of disk array of image storage of PACS. Webuil distribution was selected by the Anderson-Darling goodness-of-fit test with data of down time at $50^{\circ}C$ and $60^{\circ}C$. The equality test of shape parameter and scale parameter was conducted, so that the probability distribution estimated from data of down time at $50^{\circ}C$ and $60^{\circ}C$ was not statistically significant. The shape parameter was 1.0409, The characteristic life was 24603.5 hours at normal user condition($30^{\circ}C$) by the analysis of weibull-arrhenius modeling which included the acceleration factor of temperature, and The activation energy was 0.5011 eV through arrhenius modeling. The failure analysis of the failure samples of acceleration test and the samples of market return was conducted, so that the share percentage of failure mode was detail difference but the rank of share percentage was almost same. This study suggest the test procedure of acceleration test of hard disk drive in PACS using environment, and help the life estimation at manufacture and use.

ANN-Based Real-Time Damage Detection Technique Using Acceleration Signals in Beam-Type Structures (보 구조물의 가속도 신호를 이용한 인공신경망 기반 실시간 손상검색기법)

  • Park, Jae-Hyung;Lee, Yong-Hwan;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.229-237
    • /
    • 2007
  • In this study, an artificial neural network (ANN)-based damage detection algorithm using acceleration signals is developed for real-time alarming locations of damage in beam-type structures. A new ANN-algorithm using output-only acceleration responses is designed tot damage detection in real time. The cross-covariance of two acceleration-signals measured at two different locations is selected as the feature representing the structural condition. Neural networks are trained lot potential loading Patterns and damage scenarios of the target structure for which its actual loadings are unknown. The feasibility and practicality of the proposed method are evaluated from laboratory-model tests on free-free beams for which accelerations were measured before and after several damage cases.

Vibration-based Damage Monitoring Scheme of Steel Girder Bolt-Connection Member by using Wireless Acceleration Sensor Node (무선 가속도 센서노드를 이용한 강 거더 볼트연결 부재의 진동기반 손상 모니터링 체계)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.81-89
    • /
    • 2012
  • This study propose the vibration-based damage monitoring scheme for steel girder bolt-connection member by using wireless acceleration sensor node. In order to achieve the objective, the following approaches are implemented. Firstly, wireless acceleration sensor node is described on the design of hardware components and embedded operation software. Secondly, the vibration-based damage monitoring scheme of the steel girder bolt-connection member is described. The damage monitoring scheme performed global damage occurrence alarming and damage localization estimation by the acceleration response feature analysis. The global damage alarming is applied to the correlation coefficient of power spectral density. The damage localization estimation is applied to the frequency-based damage detection technique and the mode-shape-based damage detection technique. Finally, the performance of the vibration-based damage monitoring scheme is evaluated for detecting the bolt-connection member damage on a lab-scale steel girder.

Development of a Nonlinear SI Scheme using Measured Acceleration Increment (측정 가속도 증분을 사용한 비선형 SI 기법의 개발)

  • Shin, Soo-Bong;Oh, Seong-Ho;Choi, Kwang-Hyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.73-80
    • /
    • 2004
  • A nonlinear time-domain system identification algorithm using measured acceleration data is developed for structural damage assessment. To take account of nonlinear behavior of structural systems, an output error between measured and computed acceleration increments has been defined and a constrained nonlinear optimization problem is solved for optimal structural parameters. The algorithm estimates time-varying properties of stiffness and damping parameters. Nonlinear response of restoring force of a structural system is recovered by using the estimated time-varying structural properties and computed displacement by Newmark-$\beta$ method. In the recovery, no pre-defined model for inelastic behavior has been assumed. In developing the algorithm, noise and incomplete measurement in space and state have been considered. To examine the developed algorithm, numerical simulation and laboratory experimental studies on a three-story shear building have been carried out.

The Performance Analysis of the Parameter Extracting Technique for the Vibration Monitoring System in High Voltage Motor (고압전동기용 진동 감시 시스템의 계수 추출기법 성능 분석)

  • Park, Jung-Cheul;Lee, Dal-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.529-536
    • /
    • 2019
  • In this paper, the signals of the sensor for extracting characteristic parameters of the rotor are collected and the performance of the extraction technique is analyzed. To this end, a vibration test league was developed for conducting model tests to analyze the signal characteristics under normal operation. As a result, it is judged that no change in the measured the raw data amplitude will occur in the acceleration sensor with the unbalanced mass measured from the acceleration sensor. Performing FFT showed a significant increase in amplitude of the rotational frequency of 20 Hz as the unbalanced mass increased. The analysis results according to the change in the unequal mass of the speed sensor also showed a significant increase in the 1X Harmonics component, such as the acceleration sensor. There was no change in the amplitude of the acceleration sensor data when the misalignment occurred, and for the Envelope data, the amplitude of 2X (40 Hz) was increased depending on the degree of misalignment. The velocity sensor at change of misalignment also showed similar results to the acceleration sensor, and the peak was reduced at 600 Hz as the load increased in the frequency spectrum.

Experimental Verification of a Liquid Damper with Changeable Natural Frequency for Building Response Control (고유진동수 조절이 가능한 액체댐퍼의 건물응답 제어실험)

  • Kim, Dong-Ik;Min, Kyung-Won;Park, Ji-Hun;Kim, Jae-Keon;Hwang, Kyu-Seok;Gil, Yong-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.323-330
    • /
    • 2012
  • This study deals with the experiments of liquid dampers with multi cells whose vertical tubes are divided into several square columns for easily changing natural frequencies. Shaking table test is performed to verify control effectiveness of the dampers which are installed on a building structure. To design liquid dampers, a 64-story building structure is reduced to a SDOF structure with 1/20 of similitude laws based on acceleration. The structure model is made up to adjust its mass and stiffness easily, with separate mass and drive parts. Mass parts indicate real structure's weights and drive parts indicate real structure's stiffness with springs and LM guides. Manufactured liquid damper has 18 cells and its natural frequency ranges are 0.65Hz to 0.81Hz. Shaking table test is carried out with one way excitation to compare with only accelerations of a large-scale structure and a structure installed with liquid dampers. Control performance of the liquid damper is expressed by the transfer function from shaking table accelerations to the large-scale structure ones. Testing results show that the liquid damper reduced a large-scale structure's response by tuned natural frequencies.

A Model-Fitting Approach of External Force on Electric Pole Using Generalized Additive Model (일반화 가법 모형을 이용한 전주 외력 모델링)

  • Park, Chul Young;Shin, Chang Sun;Park, Myung Hye;Lee, Seung Bae;Park, Jang Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.11
    • /
    • pp.445-452
    • /
    • 2017
  • Electric pole is a supporting beam used for power transmission/distribution which accelerometer are used for measuring a external force. The meteorological condition has various effects on the external forces of electric pole. One of them is the elasticity change of the aerial wire. It is very important to perform modelling. The acceleration sensor is converted into a pitch and a roll angle. The meteorological condition has a high correlation between variables, and selecting significant explanatory variables for modeling may result in the problem of over-fitting. We constructed high deviance explained model considering multicollinearity using the Generalized Additive Model which is one of the machine learning methods. As a result of the Variation Inflation Factor Test, we selected and fitted the significant variable as temperature, precipitation, wind speed, wind direction, air pressure, dewpoint, hours of daylight and cloud cover. It was noted that the Hours of daylight, cloud cover and air pressure has high explained value in explonatory variable. The average coefficient of determination (R-Squared) of the Generalized Additive Model was 0.69. The constructed model can help to predict the influence on the external forces of electric pole, and contribute to the purpose of securing safety on utility pole.

The Accelerated Life Test of 2.5 Inch Hard Disk In The Environment of PC using (PC 사용 환경의 2.5 인치 하드디스크의 가속 수명 시험)

  • Cho, Euy-Hyun;Park, Jeong-Kyu;Seo, Hui-Don
    • Journal of Digital Contents Society
    • /
    • v.15 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • In order to estimate the life of 2,5 inch HDD which is adopted by PC environment, make the test plan which reflect the failure mode of market, make the test model of accelerated life test which reflect the stress of temperature. after an analysis of the environment of PC using, test procedure was decided that operation was write 50 % and read 50 %, and then access method was sequential 50 % and random 50%. The acceleration life test was executed on condition that temperature was $50^{\circ}C$ and $60^{\circ}C$, performance was 95 % in max performance, test time was 1000 hours. by the test of goodness of fit of anderson-darling of the failure data during test, it was confirmed that the distribution of failure fellow weibull. test for shape and scale was equal, and shape parameter was 0.7177, characteristic life was 429434 hours at normal user condition($30^{\circ}C$) by the analysis of weibull-arrhenius modeling. It made no difference about the statistics when equality test was executed. The activation energy was 0.2775eV. In analyzing between the failure samples of acceleration test and the samples of market return even though there is detail difference about the share of failure mode, the rank of share was almost same. This study suggest the test procedure of acceleration test of 2.5 inch HDD in PC using environment, and help the life estimation at manufacture and user.

Service Life Assessment of Construction Sealants with Accelerated Degradation Test (가속열화시험에 의한 건축용 실란트의 사용수명 평가)

  • Kwon, Young-Il;Kim, Seung-Jin;Lee, Hyoung-Wook
    • Journal of Applied Reliability
    • /
    • v.7 no.4
    • /
    • pp.149-162
    • /
    • 2007
  • Field and accelerated tests are performed to assess the service life of construction sealants. Mathematical degradation models for tensile strength and elongation, that are the two major performance characteristics of sealants, are derived from the test results. Accelerated degradation test methods for assessing service life of construction sealants are developed based on the degrading performance and a numerical example is provided.

  • PDF