• Title/Summary/Keyword: 가속효과

Search Result 595, Processing Time 0.028 seconds

A Preliminary Study of Roller Types for Chip Seals Construction (Chip Seals 시공을 위한 롤러 종류에 따른 기초적인 연구)

  • Lee, Jae-Jun;Kim, R. Young-Soo
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.79-85
    • /
    • 2010
  • This paper presents a preliminary study of roller types for chip seals based on aggregate retention performance. Chip seal test sections composed of single seals of granite 78M aggregate and CRS-2 emulsion were constructed using three different roller types: the pneumatic tire roller, steel wheel roller, and combination roller. In order to investigate the performance of these rollers effectively, it is critical to test chip seal samples obtained directly from field construction. Therefore, test sections were constructed on New Sandy Hill Church Road near Bailey, North Carolina. Chip seal samples obtained from these sections were used for laboratory testing. The aggregate retention performance was evaluated using the flip-over test (FOT), Vialit test, and the third-scale Model Mobile Loading Simulator (MMLS3). Based on the test results and visual observation, both the pneumatic roller and the combination roller used together are recommended to improve chip seal performance with the sequence of the pneumatic roller rolling first followed by the combination roller.

Development of a Fuel-Efficient Driving Method based on Slope and Length of Uphill Freeway Section (고속도로 오르막 구간의 경사도와 길이에 따른 연료 효율적 주행방법 개발)

  • Choi, Ji-Eun;Bae, Sang-Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.1
    • /
    • pp.77-84
    • /
    • 2015
  • In 2011, greenhouse gas emissions of transport sector were 85.04 million $tonCO_2eq$ and road emissions accounted for 95% of total emissions in the transport sector. There are few innovative technologies to reduce greenhouse gas emissions aside from eco-driving education and public relation program. Therefore, this paper focused on analyzing optimal acceleration by certain road grades and suggested fuel-efficient driving method for various uphill sections. Scenarios were established by driving modes. Speed profiles were generated by scenarios and speed variations. Each speed profile applied to Comprehensive Modal Emission Model and then each fuel consumption was estimated. Driving mode and speed variation that minimized fuel consumption were driven according to grade percent and uphill distance. When driving in the eco-friendly mode of the driving and speed variation, reduction rate of fuel consumption was evaluated by comparison between eco-driving and cruise control mode. When a vehicle drove under eco-driving mode at 100kph, 90kph and 80kph on uphill road, fuel consumptions were reduced by 33.9%, 30.8% and 5.3%, respectively.

Characterization of Physical Processes and Secondary Particle Generation in Radiation Dose Enhancement for Megavoltage X-rays (MV X선의 방사선 선량 증강 현상에서 물리적 특성과 이차입자의 발생)

  • Hwang, Chulhwan;Kim, JungHoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.791-799
    • /
    • 2019
  • We evaluated the physical properties that occur to dose enhancement and changes from secondary particle production resulting from the interaction between enhancement material. Geant4 was used to perform a Monte Carlo simulation, and the medical internal radiation dose (MIRD) head phantom were employed. X-rays of 4, 6, 10, 15, 18, and 25 MV were used. Aurum (Au) and gadolinium (Gd) were applied within the tumor volume at 10, 20, and 30 mg/g, and an experiment using soft tissue exclusively was concomitantly performed for comparison. Also, particle fluence and initial kinetic energy of secondary particle of interaction were measured to calculate equivalent doses using the radiation weight factor. The properties of physical interaction by the radiation enhancement material showed the great increased in photoelectric effect as compared to the compton scattering and pair production, occurred with the highest, in aurum and gadolinium it is shown in common. The photonuclear effect frequency increased as the energy increased, thereby increasing secondary particle production, including alpha particles, protons, and neutrons. During dose enhancement using aurum, a maximum 424.25-fold increase in the equivalent dose due to neutrons was observed. This study was Monte Carlo simulation corresponds to the physical process of energy transmission in dose enhancement. Its results may be used as a basis for future in vivo and in vitro experiments aiming to improve effects of dose enhancement.

An Evaluation of Loss Factor of Damping Treatment Materials for Panels of Railway Vehicles (철도차량용 패널 감쇠처리재의 감쇠계수 평가)

  • Kang, Gil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.489-496
    • /
    • 2019
  • This paper is a study on the evaluation of loss factor of damping treatment materials to reduce the noise and vibration for panels of railway vehicles and automobiles. In order to determine the modal parameters of damping materials, beam excitation tests were carried out using different type PVC coated aluminum and steel base beam specimens. The specimens were excited from 10 Hz to 1000 Hz frequency range using sinusoidal force, and transfer mobility data were measured by using an accelerometer. The loss factors were determined by using integrated program, based on theories of Half Power Method, Minimum Tangent Error Method, Minimum Angle Error Method and Phase Change Method, which enable to evaluate the parameters using modal circle fit and least squares error method. In the case of lower loss factor and data of linear characteristics, any method could be applied for evaluation of parameters, however the case of higher loss factor or data including non-linear characteristics, the minimum angle error method could reduce the loss factor evaluation. The obtained dynamic properties of the coating material could be used for application of Finite Element Method analyzing the noise control effects of complex structures such as carbody or under-floor boxes of rolling stock. The damping material will be very useful to control the structural noise, because the obtained modal loss factors of each mode show very good effect on over $2^{nd}$ mode frequency range.

Seismic Performance Evaluation of the Li-Polymer Battery Rack System for Nuclear Power Plant (원자력발전소용 리튬폴리머 배터리 랙 시스템의 내진성능평가)

  • Kim, Si-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.13-19
    • /
    • 2019
  • After the Fukushima nuclear accident, a new power supply using a lithium polymer battery has been proposed the first time in the world as the safety of the emergency battery facility has been required. It is required to have the safety of the rack system in which the battery device is installed in order to apply the proposed technology to the field. Therefore, the purpose of this study is to evaluate the seismic performance of string and rack frame for lithium-polymer battery devices developed for the first time in the world to satisfy 72 hours capacity. (1) The natural frequency of the unit rack system was 9 Hz, and the natural frequency before and after the earthquake load did not change. This means that the connection between members is secured against the design earthquake load. (2) he vibration reduction effect by string design was about 20%. (3) As a result of the seismic performance test under OBE and SSE conditions, the rack frame system was confirmed to be safe. Therefore, the proposed rack system can be applied to the nuclear power plant because the rack system has been verified structural safety to the required seismic forces.

A Fundamental Study on Shearing/Bonding Characteristics of Interface Between Rock Mass and Backfills in Mine Openings (폐광산 채움재와 암반 경계부의 전단 및 접합특성에 관한 기초 연구)

  • Kim, Byung-Ryeol;Lee, Hyeon-woo;Kim, Young-Jin;Cho, Kye-Hong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.623-646
    • /
    • 2021
  • As the demand for electric power increases with acceleration of electrification at home and abroad, the needs for coal-fired electrical power plant are accordingly increased. However, these coal-fired electrical power plants induce also many environmental problems such as increase of air pollutants, increase of possibility of land contamination by reclamation of coal ash, even though these power plants have a good economical efficiency. In case of a by-product of coal-fired electrical power plants, only 70% of them are recycled and the remaining 30% of by-product are fully buried in surrounding ground. Consequently, this study deals with coal ash backfilling mechanism in abandoned mine openings for the purposes of increasing the coal ash recycling rate as well as securing the mine area stability. In order to analyze the backfill and ground reinforcement by interaction between rock mass and backfills, the copying samples of discontinuous surface with different roughnesses were produced for bond strength tests and direct shear tests. And statistical analysis was also conducted to decide the characteristics of bond and shear behavior with joint roughness and their curing day. Numerical simulations were also analyzed for examining the effect of interface behavior on ground stability.

Evaluation of the Soil-Structure Interaction of a MDOF Column Type Structure on Group Piles Based on the Large Scale 1g Shaking Table Test and the Numerical Analysis (대형 진동대 실험 및 수치해석을 이용한 다자유도 기둥 구조물과 군말뚝 기초의 지반-구조물 상호작용 평가)

  • Chae, Jonghoon;Yoon, Hyungchul;Ahn, Jaehun;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.47-58
    • /
    • 2022
  • Many 1g shaking table tests with an SDOF structure supported by a single pile were performed to evaluate the soil-structure interaction (SSI) effect. Since most structures supported by group piles are MDOF structures with columns, the SSI effect is simulated using a large 1g shaking table test and numerical analysis. According to the results, the movement in the piles tends to increase with input acceleration and when the input frequency is similar to the natural frequency. Furthermore, the slope of the dynamic p-y curve remains constant regardless of the variation of acceleration and input frequency. According to the results of the dynamic p-y backbone curve and the moment of group piles, a center pile with a leading pile has more soil resistance than side piles with a trailing pile, and the effect of group piles is observed above the 7D center to center pile distance.

Important Facility Guard System Using Edge Computing for LiDAR (LiDAR용 엣지 컴퓨팅을 활용한 중요시설 경계 시스템)

  • Jo, Eun-Kyung;Lee, Eun-Seok;Shin, Byeong-Seok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.345-352
    • /
    • 2022
  • Recent LiDAR(Light Detection And Ranging) sensor is used for scanning object around in real-time. This sensor can detect movement of the object and how it has changed. As the production cost of the sensors has been decreased, LiDAR begins to be used for various industries such as facility guard, smart city and self-driving car. However, LiDAR has a large input data size due to its real-time scanning process. So another way for processing a large amount of data are needed in LiDAR system because it can cause a bottleneck. This paper proposes edge computing to compress massive point cloud for processing quickly. Since laser's reflection range of LiDAR sensor is limited, multiple LiDAR should be used to scan a large area. In this reason multiple LiDAR sensor's data should be processed at once to detect or recognize object in real-time. Edge computer compress point cloud efficiently to accelerate data processing and decompress every data in the main cloud in real-time. In this way user can control LiDAR sensor in the main system without any bottleneck. The system we suggest solves the bottleneck which was problem on the cloud based method by applying edge computing service.

Suppression of Coupled Pitch-Roll Motions using Quasi-Sliding Mode Control (준 슬라이딩 모드 제어를 이용한 선박의 종동요 및 횡동요 억제)

  • Lee, Sang-Do;Cuong, Truong Ngoc;Xu, Xiao;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.211-218
    • /
    • 2021
  • This paper addressed the problems of controlling the coupled pitch-roll motions in a marine vessel exposed to the regular waves in the longitudinal and transversal directions. Stabilization of the pitch and roll motions can be regarded as the essential task to ensure the safety of a ship's navigation. One of the important features in the pitch-roll motions is the resonance phenomena, which result in unexpected large responses in terms of pitch and roll modes in some specific conditions. Besides, owing to its inherent characteristics of coupled combination and nonlinearity of restoring terms, the vessel shows various dynamical behaviors according to the system parameters, especially in the pitch responses. Above all, it can be seen that suppression of pitch rate remains the most significant challenge to overcome for ship maneuvering safety studies. To secure the stable upright condition, a quasi-sliding mode control scheme is employed to reduce the undesirable pitch and roll responses as well as chattering elimination. The Lyapunov theory is adopted to guarantee the closed stability of the pitch-roll system. Numerical simulations demonstrate the effectiveness of the control scheme. Finally, the control goals of state convergences and chattering reduction are effectively realized through the proposed control synthesis.

Evaluation of Surface Dose for Field-in-Field (FIF) Technique in Breast Radiotherapy (유방암 방사선치료에서 Field-in-Field (FIF) 기법의 조사면 주변 선량 분석)

  • Il-Hoon, Cho;Daehong, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.7
    • /
    • pp.851-856
    • /
    • 2022
  • The purpose of this study is to confirm the effect of reducing the surface dose around the radiation field in breast cancer radiotherapy using the Field-in-Field (FIF) technique. X-ray was exposed from a linear accelerator (Linac) was used for irradiation, and the surface dose was measured with a glass dosimeter. The source-to-surface distance (SSD) was 90 cm, the field size is 10 × 10 cm2, and the X-ray energy was 6 MV and 10 MV, respectively. The surface dose of the FIF was compared with the dose measured in the physical wedge (PW) and dynamic wedge (DW). Wedge angles of 15° and 30° were used in the PW and DW, respectively. Surface dose was measured at 1 cm, 3 cm, and 5 cm from the center of the field size, respectively. According to the results, FIF showed lower surface dose compared to PW and DW regardless of the energy of the X-ray beam, wedge angle, and dose measurement point. Since FIF could reduce the radiation dose in periphery of the field size in breast cancer treatment, it is expected to be able to reduce the secondary damage caused by the radiation beam as well as to obtain a uniform dose distribution on the target.