• Title/Summary/Keyword: 가속도 응답

Search Result 527, Processing Time 0.03 seconds

Study on Improvement of Response Spectrum Analysis of Pile-supported Structure: Focusing on the Natural Periods and Input Ground Acceleration (잔교식 구조물의 응답스펙트럼 해석법 개선사항 도출 연구: 고유주기 및 입력지반가속도를 중점으로)

  • Yun, Jung-Won;Han, Jin-Tae;Kim, Jong-Kwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.6
    • /
    • pp.17-34
    • /
    • 2020
  • In response spectrum analysis of pile-supported structure, an amplified seismic wave should be used as the input ground acceleration through the site-response analysis. However, each design standard uses different input ground acceleration criteria, which leads to confusion in determining the appropriate input ground acceleration. In this study, the ground accelerations were calculated through dynamic centrifuge model test, and the response spectrum analysis was performed using the calculated ground acceleration. Then, the moments derived from the test and analysis were compared, and a method for determining the appropriate input ground acceleration in response spectrum analysis was presented. Comparison of the experimental and simulated results reveals that modeling of the ground using elastic springs allows proper simulation of the natural period of the structure, and the use of a seismic wave that is amplified at the ground surface as the input ground acceleration provided the most accurate results for the response analysis of pile-supported structures in sands.

Acceleration Amplification Analysis according to Changes in Laminar Shear Box Boundary Conditions (연성토조의 경계조건 변화에 따른 가속도 증폭 분석)

  • Jeong, Sugeun;Jin, Yong;Park, Kyungho;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.143-155
    • /
    • 2022
  • In this study, the response acceleration amplification according to different conditions was analyzed by changing the boundary condition of the soil called LSB (Laminar Shear Box), which is placed on a 1 g shaking table for earthquake simulation experiments. Experiments were carried out with different boundary conditions by fixing both sides of the LSB, and two samples were tested by installing an accelerometer at the same location. In addition, using DEEPSOIL v7 program, a one-dimensional ground response analysis was performed to compare and analyze with the free field condition. As a result, it was confirmed that the acceleration was amplified as it went from the lower layer to the upper layer, and as a result of comparing it with the ground response analysis, it was confirmed that it appeared similar to the analysis under the free field condition. As a result of the SA (Spectrum acceleration) analysis, a result similar to that of the ground response analysis was obtained, and in the case of fixing, it was confirmed that the PSA (Peak Spectral Acceleration) was further amplified.

Dynamic Characteristics of Railway Plate Girder Bridges with Increase of Diesel Locomotive Speed (철도차량의 증속에 따른 판형교의 진동특성)

  • Cho, Eun Sang;Kim, Hyun Min;Hwang, Won Sup;Oh, Ji Taek
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.769-782
    • /
    • 2006
  • As the ambient vibration test (AVT) of railway bridges has a limited range of speed, it has a limitation in examining the dynamic behavior of bridges accordingto speed. Thus, in order to analyze the correlation between the speed of a train passing over a bridge and the bridge's dynamic response, we conducted a speed-increasing experiment using a real diesel locomotive. To analyze the acceleration response characteristics, we attached seven vertical accelerometers at equal intervals throughout the entire section of the bridge except the supports, and one horizontal accelerometer to the middle span. Linear variable differential transformers (LVDT) were installed at the bridge's center in both vertical and horizontal directions to investigate the vertical and horizontal behaviors. The test train was statically loaded at the center and at the end of the bridge. And its speed was increased from 5 km/h to 90 km/h. With data obtained from the experiment, the vibration level was evaluated in each direction by the filtering frequency, and the level of horizontal vibration was examined in comparison with vertical vibration. The displacement and wheel load variation was analyzed by speed.

Damage Monitoring of PSC Girder Bridges based on Acceleration -Impedance Signals under Uncertain Temperature Conditions (불확실한 온도 조건하의 PSC 거더 교량의 가속도-임피던스기반 손상 모니터링)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.107-117
    • /
    • 2011
  • In this study, the effect of temperature-induced uncertainty to damage monitoring using acceleration-impedance response features is analyzed for presterssed concrete(PSC) girder bridges. Firstly, a damage monitoring algorithm using global and local vibration features is designed. As global and local features, acceleration and electro-mechanical impedance features are selected respectively. Secondly, the temperature effect on the acceleration and impedance features for a lab-scaled PSC girder is experimentally analyzed. From the experimental results, compensation models for temperature-acceleration features and temperature-impedance features are estimated. Finally, the feasibility of the acceleration-impedance-based damage monitoring technique using the compensation model is evaluated in the PSC girder for which a set of prestress-loss and flexural stiffness loss cases were dynamically tested.

Acceleration Variation of Surrounding Ground according to distance from Strip-Type Crushed Stone Foundation (쇄석 띠기초와의 거리에 따른 주변지반의 가속도 변화)

  • Son, Su-Won;Son, Tae-Ik;Kim, Soo-Bong;Kim, Jin-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.217-223
    • /
    • 2019
  • In this study, the acceleration changes of the surrounding ground when crushed stones were installed in a strip-type were analyzed using the 1-G shaking table test. The ground was constructed from clay, and the foundation was installed using crushed stone of strip-type form. The response acceleration and response spectrum for various input seismic motions were analyzed. The change in acceleration was examined according to the adjacent distance to the strip-type crushed stone foundation. In the Hachinohe seismic motion results, there was no significant decrease in acceleration, but the maximum response acceleration for the two seismic motions was inversely proportional to the distance from the crushed stone foundation. As a result of the response spectrum analysis, the attenuation period in the long period and the short period input wave were different from each other, and the change in response spectrum affected the maximum acceleration value. As the distance from the crushed stone foundation was increased, the attenuation was larger in the period between 0.08 and 0.5 sec in the Hachinohe seismic motion, the attenuation was larger in the period of less than 0.2 seconds in the Northridge seismic motion.

The Acceleration Response Spectrum for Simulated Strong Motions Considering the Earthquake Characteristics of the Korean Peninsula (한반도 지진특성을 고려하여 모사된 강진동에 대한 가속도 응답스펙트럼)

  • Kim, Sung-Kyun
    • Journal of the Korean earth science society
    • /
    • v.28 no.2
    • /
    • pp.179-186
    • /
    • 2007
  • The response spectrum is one of the important basic materials for the aseismic design. Numerous strong ground motions based on the seismic source characteristics for the earthquakes occurring in the Korean Peninsula were simulated to obtain the response spectra by using the computer program, SMSIM, developed by Boore (2005). Through the extensive review of other study outcomes, the input data for the simulation such as seismic source and attenuation characteristics were selected. The spectra obtained from the simulated ground motions were normalized to 1.0 g of zero period acceleration and compared with the standard response spectrum proposed by the U.S. Atomic Energy Commission (AEC, 1973). In this study, we found that the spectral values for the response spectra appeared to be larger than those of the standard spectrum in the frequency band above roughly 10 Hz. The variation of resulting response spectra was evaluated with the variable stress drops. It was shown that the spectral amplitude of the spectrum for the larger stress drop denotes higher value in the low frequency range.

Design and Fabrication of a Mass-spring System for the Force-balance Servo Accelerometer (힘평형 서보 가속도계의 질량지지 장치 설계 및 제작)

  • Kim, Young-Dam;Go, Young-Jun;Nam, Hyo-Duk;Lee, Doo-Hee;Chang, Ho-Gyeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.14-20
    • /
    • 2001
  • The mass-spring system with four arms for the force-balance servo accelerometer was designed and fabricated. The response characteristics of a mass-spring system was calculated with the change of arms thickness and seismic mass by the finite element method (FEM). Furthermore, the response characteristics of accelerometer was measured using the change of interference pattern and response voltage value by Michelson interferometer. The response characteristics with changing length and thickness of arm was changed drastically, and changing seismic mass was minor effect for the response characteristics of mass-spring system. The measured resonant frequencies have good agreement with that of numerical analysis within 5% range.

  • PDF

Study on the Seismic response Spectra of a Structure Built on the Deep Soil Layers Classified in UBC-97 (UBC-97에 분류된 깊은 지반위에 세워진 구조물의 지진응답 스펙트럽에 관한 연구)

  • 김용석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.63-76
    • /
    • 2000
  • 구조물-지반 상호작용에서 알려진 것처럼 구조물 지진응답은 구조물하부 지반조거에 따라 영향을 받는데 UBC-97을 포함한 여러내진설계규준에서 지반사태 영향을 반영하고 있다 이 연구에서는 기초크기 기초밑 지반깊이, 입력지진 작용점 및 기초 근입깊이 등의 영향을 살펴보고 깊은 지반 위에 세워진 구조물의 평균응답스펙트럼을 UBC-97 탄성응답스펙트럼과 비교하기 위해 구조물-지반 상호작용을 고려한 지진해석을 가상 3차원 유한요소법과 부구조물법을 이용하여 1952년 Taft와 1940년 El Centro 지진기록을 주파수영역에서 수행하였다 연구결과에 의하면 기초크기는 구조물 응답에 별 영향이 없고 기초저면 지반깊이는 구조물체계의 고유주기와 최대가속도를 변경시켰다 또 입력지진의 합리적 작용점은 기초저면이라는 것이 확인되었으며 깊은 지반위에 놓인 기초의 근입은 저주기영역에서 구조물 응답을 상당히 줄어들게 하였다 한편 30m 깊은 지반위에 세워진 구조물의 평균가속도와 UBC-97 가속도를 비교한 결과 UBC-97 탄성응답스펙트럼에 의한 구조물 내진설계가 안전하지 못할 수도 있으므로 UBC-97 지진계수의 할증이 필요하다.

  • PDF

Experimental Verification of a Liquid Damper with Changeable Natural Frequency for Building Response Control (고유진동수 조절이 가능한 액체댐퍼의 건물응답 제어실험)

  • Kim, Dong-Ik;Min, Kyung-Won;Park, Ji-Hun;Kim, Jae-Keon;Hwang, Kyu-Seok;Gil, Yong-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.323-330
    • /
    • 2012
  • This study deals with the experiments of liquid dampers with multi cells whose vertical tubes are divided into several square columns for easily changing natural frequencies. Shaking table test is performed to verify control effectiveness of the dampers which are installed on a building structure. To design liquid dampers, a 64-story building structure is reduced to a SDOF structure with 1/20 of similitude laws based on acceleration. The structure model is made up to adjust its mass and stiffness easily, with separate mass and drive parts. Mass parts indicate real structure's weights and drive parts indicate real structure's stiffness with springs and LM guides. Manufactured liquid damper has 18 cells and its natural frequency ranges are 0.65Hz to 0.81Hz. Shaking table test is carried out with one way excitation to compare with only accelerations of a large-scale structure and a structure installed with liquid dampers. Control performance of the liquid damper is expressed by the transfer function from shaking table accelerations to the large-scale structure ones. Testing results show that the liquid damper reduced a large-scale structure's response by tuned natural frequencies.

Seismic Response Estimation of Water Extinguishing Facilities using Shaking Table Tests (진동대 실험을 통한 수계 소화설비의 지진응답평가에 관한 연구)

  • Nam, Min-Jun;Park, Seung-Hee;Kim, Dong-Joon;Choi, Jun-Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.9-18
    • /
    • 2012
  • In this study, a shaking table test was performed for the evaluation of water extinguishing facilities. Water extinguishing facilities, such as a general pipe, a seismic pipe (Loof type) and a pump, were used in the experiment. This captured the dynamic characteristics of water extinguishing systems by earthquake records at El-Centro with a 50%, 70%, 100%, 120% level. As a result, seismic type facilities have excellent seismic performance compared to general facilities. By using the acceleration response spectrum, not only is the performance evaluation of water extinguishing facilities able to be determined, but also the deformation of facilities in low earthquake levels can be known. This proposed approach can determine the seismic performance evaluation of water extinguishing facilities and verify seismic performance criteria.