• Title/Summary/Keyword: 가상 층간 결합 모델

Search Result 3, Processing Time 0.233 seconds

Study on Peridynamic Interlayer Modeling for Multilayered Structures (가상 절점을 이용한 적층 구조물의 페리다이나믹 층간 결합 모델링 검토)

  • Ahn, Tae Sik;Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.389-396
    • /
    • 2017
  • Peridynamics has been widely used in the dynamic fracture analysis of brittle materials. Recently, various crack patterns(compact region, floret, Hertz-type crack, etc.) of multilayered glass structures in experiments(Bless et al. 2010) were implemented with a bond-based peridynamic simulation(Bobaru et al.. 2012). The actual glass layers are bound with thin elastic interlayer material while the interlayer is missing from the peridynamic model used in the previous numerical study. In this study, the peridynamic interlayer modeling for the multilayered structures is proposed. It requires enormous computational time and memory to explicitly model very thin interlayer materials. Instead of explicit modeling, fictitious peridynamic particles are introduced for modeling interlayer materials. The computational efficiency and accuracy of the proposed peridynamic interlayer model are verified through numerical tests. Furthermore, preventing penetration scheme based on short-range interaction force is employed for the multilayered structure under compression and verified through parametric tests.

Peridynamic Impact Fracture Analysis of Multilayered Glass with Nonlocal Ghost Interlayer Model (비국부 층간 결합 모델을 고려한 다중적층 유리의 페리다이나믹 충돌 파괴 해석)

  • Ha, Youn Doh;An, Tae Sick
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.373-380
    • /
    • 2018
  • We present the peridynamic dynamic fracture analysis to solve impact fracturing of multilayered glass impacted by a high-velocity object. In the most practical multilayered glass structures, main layers are glued by thin elastic masking films. Thus, it is difficult and expensive to construct the numerical model for such a multilayered structure. In this paper, we employ efficient numerical modeling of multilayered structures with a nonlocal ghost interlayer model in which ghost particles are distributed between main layers and they are interacting with each other in peridynamic way. We also consider a simple nonlocal contact condition in peridynamic frameworks to solve impact and penetration of the high-velocity impactor to the multilayered structure. Finally we can confirm the fracture capabilities of the method using a multilayered glass model in which 7 glass layers and a single elastic backing layer are affixed by polyvinyl butyral films.

MPI-OpenMP Hybrid Parallelization for Multibody Peridynamic Simulations (다물체 페리다이나믹 해석을 위한 MPI-OpenMP 혼합 병렬화)

  • Lee, Seungwoo;Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.171-178
    • /
    • 2020
  • In this study, we develop MPI-OpenMP hybrid parallelization for multibody peridynamic simulations. Peridynamics is suitable for analyzing complicated dynamic fractures and various discontinuities. However, compared with a conventional finite element method, nonlocal interactions in peridynamics cost more time and memory. In multibody peridynamic analysis, the costs increase due to the additional interactions that occur when computing the nonlocal contact and ghost interlayer models between adjacent bodies. The costs become excessive when further refinement and smaller time steps are required in cases of high-velocity impact fracturing or similar instances. Thus, high computational efficiency and performance can be achieved by parallelization and optimization of multibody peridynamic simulations. The analytical code is developed using an Intel Fortran MPI compiler and OpenMP in NURION of the KISTI HPC center and parallelized through MPI-OpenMP hybrid parallelization. Further parallelization is conducted by hybridizing with OpenMP threads in each MPI process. We also try to minimize communication operations by model-based decomposition of MPI processes. The numerical results for the impact fracturing of multiple bodies show that the computing performance improves significantly with MPI-OpenMP hybrid parallelization.