• Title/Summary/Keyword: 가상 모델

Search Result 1,968, Processing Time 0.028 seconds

Database Security System supporting Access Control for Various Sizes of Data Groups (다양한 크기의 데이터 그룹에 대한 접근 제어를 지원하는 데이터베이스 보안 시스템)

  • Jeong, Min-A;Kim, Jung-Ja;Won, Yong-Gwan;Bae, Suk-Chan
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1149-1154
    • /
    • 2003
  • Due to various requirements for the user access control to large databases in the hospitals and the banks, database security has been emphasized. There are many security models for database systems using wide variety of policy-based access control methods. However, they are not functionally enough to meet the requirements for the complicated and various types of access control. In this paper, we propose a database security system that can individually control user access to data groups of various sites and is suitable for the situation where the user's access privilege to arbitrary data is changed frequently. Data group(s) in different sixes d is defined by the table name(s), attribute(s) and/or record key(s), and the access privilege is defined by security levels, roles and polices. The proposed system operates in two phases. The first phase is composed of a modified MAC (Mandatory Access Control) model and RBAC (Role-Based Access Control) model. A user can access any data that has lower or equal security levels, and that is accessible by the roles to which the user is assigned. All types of access mode are controlled in this phase. In the second phase, a modified DAC(Discretionary Access Control) model is applied to re-control the 'read' mode by filtering out the non-accessible data from the result obtained at the first phase. For this purpose, we also defined the user group s that can be characterized by security levels, roles or any partition of users. The policies represented in the form of Block(s, d, r) were also defined and used to control access to any data or data group(s) that is not permitted in 'read ' mode. With this proposed security system, more complicated 'read' access to various data sizes for individual users can be flexibly controlled, while other access mode can be controlled as usual. An implementation example for a database system that manages specimen and clinical information is presented.

Bond Orbital Theory of Chemical Reactivity (反應性의 結合 Orbital 理論)

  • Yang, Kang;Ree, Tai-Kyue
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.1
    • /
    • pp.20-24
    • /
    • 1964
  • The linear combination of bond orbitals method is used to investigate the reactivity of halomethanes in abstraction reactions by atoms. The activation energy is evaluated on the assumption that, in an activated complex, two electrons in a bond to be broken become completely isolated from the rest of the ${\sigma}$-electron systems. Such a model leads to an intuitively attractive concept that the interactions between the reactive bond and the neighboring bonds govern the reactivity of ${\sigma}$-electron systems. The resulting equation for the activation energy, ${\varepsilon},\;is:\;{\narepsilon}= ${\varepsilon}={\zeta}+$$${\sum}_{i=1}^3$${\eta}c-I,$ c-4 Here, subscript C-4 indicates the bond to be broken, while C-i represents the other three bonds surrounding the reactive bond; ξ is the activation energy of a hypothetical reaction of an isolated C-4 bond and an attacking atom; and ${\eta}$C-i,C-4 stems from the stabilizing interacting of C-4 bond with neighboring C-i bonds. A choie of η′s consistent with bond strength data simplifies the above equation to a form ${\varepsilon}={\zeta}\;+\;N{\eta}c$-H, C-4 where N denotes the number of C-H plus C-F bond in halomethanes. In agreement with this equation, experimental -values increase linearly with increasing N.

  • PDF

Study(V) on Development of Charts and Equations Predicting Allowable Compressive Bearing Capacity for Prebored PHC Piles Socketed into Weathered Rock through Sandy Soil Layers - Analysis of Results and Data by Parametric Numerical Analysis - (사질토를 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연속 연구(V) - 매개변수 수치해석 자료 분석 -)

  • Park, Mincheol;Kwon, Oh-Kyun;Kim, Chae Min;Yun, Do Kyun;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.10
    • /
    • pp.47-66
    • /
    • 2019
  • A parametric numerical analysis according to diameter, length, and N values of soil was conducted for the PHC pile socketed into weathered rock through sandy soil layers. In the numerical analysis, the Mohr-Coulomb model was applied to PHC pile and soils, and the contacted phases among the pile-soil-cement paste were modeled as interfaces with a virtual thickness. The parametric numerical analyses for 10 kinds of pile diameters were executed to obtain the load-settlement relationship and the axial load distribution according to N-values. The load-settlement curves were obtained for each load such as total load, total skin friction, skin friction of the sandy soil layer, skin friction of the weathered rock layer and end bearing resistance of the weathered rock. As a result of analysis of various load levels from the load-settlement curves, the settlements corresponding to the inflection point of each curve were appeared as about 5~7% of each pile diameter and were estimated conservatively as 5% of each pile diameter. The load at the inflection point was defined as the mobilized bearing capacity ($Q_m$) and it was used in analyses of pile bearing capacity. And SRF was appeared above average 70%, irrespective of diameter, embedment length of pile and N value of sandy soil layer. Also, skin frictional resistance of sandy soil layers was evaluated above average 80% of total skin frictional resistance. These results can be used in calculating the bearing capacity of prebored PHC pile, and also be utilized in developing the bearing capacity prediction method and chart for the prebored PHC pile socketed into weathered rock through sandy soil layers.

Development of a smart cane concept for guiding the visually impaired - focused on design thinking learning practices for students - (시각장애인을 위한 길 안내용 스마트 지팡이 콘셉트 개발)

  • Park, Hae Rim;Lee, Min Sun;Yang, Ho Jung
    • Journal of Service Research and Studies
    • /
    • v.13 no.1
    • /
    • pp.186-200
    • /
    • 2023
  • This study aims to improve the usability of the white cane, which is walking equipment that most local visually impaired people use and carry when going out, and to contribute to the prevention of safety accidents and the walking rights of visually impaired people by providing improvement and resolution measures for the problems identified. Also, this study is a study on the visually impaired, primarily targeting the 1st to 2nd degree visually impaired people, who cannot go out on their own without walking equipment such as a white cane, corresponding to 20% among approximately 250,000 blind and low vision people in the Korean population. In the study process, the concept has been developed from the user's point of view in order that the white cane becomes a real help in the walking step of the visually impaired and the improvement of usability of the white cane, the main walking equipment for the visually impaired, are done by problem identification through the Double Diamond Model of Design Thinking (Empathize → Define → Ideate → Prototype → Test (verify)). As a result of the investigation in the process of Empathy, a total of five issues was synthesized, including an increase in the proportion of the visually impaired people, an insufficient workforce situation to help all the visually impaired, an improvement and advancement of assistive devices essential for the visually impaired, problems of damage, illegal occupation, demolition, maintenance about braille blocks, making braille block paradigms for the visually impaired and for everyone. In Ideate and Prototype steps, situations derived from brainstorming were grouped and the relationship were made through the KJ method, and specific situations and major causes were organized to establish the direction of the concept. The derived solutions and major functions are defined in four categories, and representative situations requiring solutions and major functions are organized into two user scenarios. Ideas were visualized by arranging the virtual Persona and Customer Journey Map according to the situation and producing a prototype through 3D modeling. Finally, in the evaluation, the final concept derived is a device such a smart cane for guidance for the visually impaired as ① a smart cane emphasizing portability + ② compatibility with other electronic devices + ③ a product with safety and convenience.

End to End Model and Delay Performance for V2X in 5G (5G에서 V2X를 위한 End to End 모델 및 지연 성능 평가)

  • Bae, Kyoung Yul;Lee, Hong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.107-118
    • /
    • 2016
  • The advent of 5G mobile communications, which is expected in 2020, will provide many services such as Internet of Things (IoT) and vehicle-to-infra/vehicle/nomadic (V2X) communication. There are many requirements to realizing these services: reduced latency, high data rate and reliability, and real-time service. In particular, a high level of reliability and delay sensitivity with an increased data rate are very important for M2M, IoT, and Factory 4.0. Around the world, 5G standardization organizations have considered these services and grouped them to finally derive the technical requirements and service scenarios. The first scenario is broadcast services that use a high data rate for multiple cases of sporting events or emergencies. The second scenario is as support for e-Health, car reliability, etc.; the third scenario is related to VR games with delay sensitivity and real-time techniques. Recently, these groups have been forming agreements on the requirements for such scenarios and the target level. Various techniques are being studied to satisfy such requirements and are being discussed in the context of software-defined networking (SDN) as the next-generation network architecture. SDN is being used to standardize ONF and basically refers to a structure that separates signals for the control plane from the packets for the data plane. One of the best examples for low latency and high reliability is an intelligent traffic system (ITS) using V2X. Because a car passes a small cell of the 5G network very rapidly, the messages to be delivered in the event of an emergency have to be transported in a very short time. This is a typical example requiring high delay sensitivity. 5G has to support a high reliability and delay sensitivity requirements for V2X in the field of traffic control. For these reasons, V2X is a major application of critical delay. V2X (vehicle-to-infra/vehicle/nomadic) represents all types of communication methods applicable to road and vehicles. It refers to a connected or networked vehicle. V2X can be divided into three kinds of communications. First is the communication between a vehicle and infrastructure (vehicle-to-infrastructure; V2I). Second is the communication between a vehicle and another vehicle (vehicle-to-vehicle; V2V). Third is the communication between a vehicle and mobile equipment (vehicle-to-nomadic devices; V2N). This will be added in the future in various fields. Because the SDN structure is under consideration as the next-generation network architecture, the SDN architecture is significant. However, the centralized architecture of SDN can be considered as an unfavorable structure for delay-sensitive services because a centralized architecture is needed to communicate with many nodes and provide processing power. Therefore, in the case of emergency V2X communications, delay-related control functions require a tree supporting structure. For such a scenario, the architecture of the network processing the vehicle information is a major variable affecting delay. Because it is difficult to meet the desired level of delay sensitivity with a typical fully centralized SDN structure, research on the optimal size of an SDN for processing information is needed. This study examined the SDN architecture considering the V2X emergency delay requirements of a 5G network in the worst-case scenario and performed a system-level simulation on the speed of the car, radius, and cell tier to derive a range of cells for information transfer in SDN network. In the simulation, because 5G provides a sufficiently high data rate, the information for neighboring vehicle support to the car was assumed to be without errors. Furthermore, the 5G small cell was assumed to have a cell radius of 50-100 m, and the maximum speed of the vehicle was considered to be 30-200 km/h in order to examine the network architecture to minimize the delay.

The Role of Control Transparency and Outcome Feedback on Security Protection in Online Banking (계좌 이용 과정과 결과의 투명성이 온라인 뱅킹 이용자의 보안 인식에 미치는 영향)

  • Lee, Un-Kon;Choi, Ji Eun;Lee, Ho Geun
    • Information Systems Review
    • /
    • v.14 no.3
    • /
    • pp.75-97
    • /
    • 2012
  • Fostering trusting belief in financial transactions is a challenging task in Internet banking services. Authenticated Certificate had been regarded as an effective method to guarantee the trusting belief for online transactions. However, previous research claimed that this method has some loopholes for such abusers as hackers, who intend to attack the financial accounts of innocent transactors in Internet. Two types of methods have been suggested as alternatives for securing user identification and activity in online financial services. Control transparency uses information over the transaction process to verify and to control the transactions. Outcome feedback, which refers to the specific information about exchange outcomes, provides information over final transaction results. By using these two methods, financial service providers can send signals to involved parties about the robustness of their security mechanisms. These two methods-control transparency and outcome feedback-have been widely used in the IS field to enhance the quality of IS services. In this research, we intend to verify that these two methods can also be used to reduce risks and to increase the security protections in online banking services. The purpose of this paper is to empirically test the effects of the control transparency and the outcome feedback on the risk perceptions in Internet banking services. Our assumption is that these two methods-control transparency and outcome feedback-can reduce perceived risks involved with online financial transactions, while increasing perceived trust over financial service providers. These changes in user attitudes can increase the level of user satisfactions, which may lead to the increased user loyalty as well as users' willingness to pay for the financial transactions. Previous research in IS suggested that the increased level of transparency on the process and the result of transactions can enhance the information quality and decision quality of IS users. Transparency helps IS users to acquire the information needed to control the transaction counterpart and thus to complete transaction successfully. It is also argued that transparency can reduce the perceived transaction risks in IS usage. Many IS researchers also argued that the trust can be generated by the institutional mechanisms. Trusting belief refers to the truster's belief for the trustee to have attributes for being beneficial to the truster. Institution-based trust plays an important role to enhance the probability of achieving a successful outcome. When a transactor regards the conditions crucial for the transaction success, he or she considers the condition providers as trustful, and thus eventually trust the others involved with such condition providers. In this process, transparency helps the transactor complete the transaction successfully. Through the investigation of these studies, we expect that the control transparency and outcome feedback can reduce the risk perception on transaction and enhance the trust with the service provider. Based on a theoretical framework of transparency and institution-based trust, we propose and test a research model by evaluating research hypotheses. We have conducted a laboratory experiment in order to validate our research model. Since the transparency artifact(control transparency and outcome feedback) is not yet adopted in online banking services, the general survey method could not be employed to verify our research model. We collected data from 138 experiment subjects who had experiences with online banking services. PLS is used to analyze the experiment data. The measurement model confirms that our data set has appropriate convergent and discriminant validity. The results of testing the structural model indicate that control transparency significantly enhances the trust and significantly reduces the risk perception of online banking users. The result also suggested that the outcome feedback significantly enhances the trust of users. We have found that the reduced risk and the increased trust level significantly improve the level of service satisfaction. The increased satisfaction finally leads to the increased loyalty and willingness to pay for the financial services.

  • PDF

3-D Finite element stress analysis in screw-type, cement-type, and combined-type implant fixed partial denture designs (임플란트 상부보철물의 유지형태에 따른 3차원 유한요소 응력분석)

  • Lee, Sung-Chun;Kim, Seok-Gyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.365-375
    • /
    • 2009
  • Statement of problems: Stress analysis on implant components of the combined screw- and cement-retained implant prosthesis has not investigated yet. Purpose: The purpose of this study was to assess the load distribution characteristics of implant prostheses with the different prosthodontic retention types, such as cement-type, screw-type and combined type by using 3-dimensional finite element analysis. Material and methods: A 3-dimensional finite element model was created in which two SS II implants (Osstem Co. Ltd.) were placed in the areas of the first premolar and the first molar in the mandible, and three-unit fixed partial dentures with four different retention types were fabricated on the two SS II implants. Model 1 was a cement-retained implant restoration made on two cement-retained type abutments (Comocta abutment; Osstem Co. Ltd.), and Model 2 was a screw-retained implant restoration made on the screw-retained type abutments (Octa abutment; Osstem Co. Ltd.). Model 3 was a combined type implant restoration made on the cement-retained type abutment (Comocta abutment) for the first molar and the screw-retained type abutment (Octa abutment) for the first premolar. Lastly, Model 4 was a combined type implant restoration made on the screw-retained type abutment (Octa abutment) for the first molar and the cement-retained type abutment (Comocta abutment) for the first premolar. Average masticatory force was applied on the central fossa in a vertical direction, and on the buccal cusp in a vertical and oblique direction for each model. Von-Mises stress patterns on alveolar bone, implant body, abutment, abutment screw, and prosthetic screw around implant prostheses were evaluated through 3-dimensional finite element analysis. Results: Model 2 showed the lowest von Mises stress. In all models, the von Mises stress distribution of cortical bone, cancellous bone and implant body showed the similar pattern. Regardless of loading conditions and type of abutment system, the stress of bone was concentrated on the cortical bone. The von-Mises stress on abutment, abutment screw, and prosthetic screw showed the lower values for the screw-retained type abutment than for the cement-retained type abutment regardless of the model type. There was little reciprocal effect of the abutment system between the molar and the premolar position. For all models, buccal cusp oblique loading caused the largest stress, followed by buccal cusp vertical loading and center vertical loading. Conclusion: Within the limitation of the FEA study, the combined type implant prosthesis did not demonstrate more stress around implant components than the cement type implant prosthesis. Under the assumption of ideal passive fit, the screw-type implant prosthesis showed the east stress around implant components.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.