• Title/Summary/Keyword: 가상 데이터 생성

Search Result 392, Processing Time 0.022 seconds

Numerical simulations of turbulent flow through submerged vegetation using LES (LES를 이용한 침수식생을 통과하는 난류흐름 수치모의)

  • Kim, Hyung Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6305-6314
    • /
    • 2015
  • This study presents numerical simulations of mean flow and turbulence structure of an open channel with submerged vegetation. Filtered Navier-Stokes equations are solved using large-eddy simulation (LES). The immersed boundary method (IBM) is employed based on a Cartesian grid. The numerical result is compared with experimental data of Liu et al. (2008) and shows that simulated results coincided reasonably with experimental data within the average error of 10%. Strong vortices are generated at the interface between vegetated and non-vegetated regions with spanwise extent. The generation of turbulence induced by shear at the interface is interfered with wake turbulence, resulting turbulence intensity maximum. Turbulence produced by shear affects the flow in vegetated region and the penetration depth increases with an increase in the submergence ratio. This result can be used to understand sediment transport mechanisms in the vegetated region.

Development of GNSS Field Survey System for Effective Creation of Survey Result and Enhancement of User Convenience (효과적인 측량 성과물 작성 및 사용자 편의성 강화를 위한 GNSS 현장 측량시스템 개발)

  • Park, Joon Kyu;Kim, Min Gyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.203-210
    • /
    • 2017
  • Korea has established an advanced infrastructure for real-time precise positioning such as CORS, virtual reference station service and perform continuous upgrading. However, in order to utilize the national infrastructure, it is necessary to process the acquired spatial information and take many steps to derive the final product. In addition, this process is highly dependent on foreign software. In this study, GNSS field survey system was developed and evaluation of its usability was performed. Real-time GNSS field survey system was developed and the system improves user̓s convenience and usability. The system was able to conduct survey effectively and produce the results. In addition, we compare the existing software with the survey performance to show the availability of the real-time GNSS surveying system. The system developed through the research can perform all the functions from real-time survey to the production of the outputs. It can create economical added value of the foreign software as a whole and simplify the work required for post-survey performance.

3D Human Shape Deformation using Deep Learning (딥러닝을 이용한 3차원 사람모델형상 변형)

  • Kim, DaeHee;Hwang, Bon-Woo;Lee, SeungWook;Kwak, Sooyeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.19-27
    • /
    • 2020
  • Recently, rapid and accurate 3D models creation is required in various applications using virtual reality and augmented reality technology. In this paper, we propose an on-site learning based shape deformation method which transforms the clothed 3D human model into the shape of an input point cloud. The proposed algorithm consists of two main parts: one is pre-learning and the other is on-site learning. Each learning consists of encoder, template transformation and decoder network. The proposed network is learned by unsupervised method, which uses the Chamfer distance between the input point cloud form and the template vertices as the loss function. By performing on-site learning on the input point clouds during the inference process, the high accuracy of the inference results can be obtained and presented through experiments.

Machine Learning-based Optimal VNF Deployment Prediction (기계학습 기반 VNF 최적 배치 예측 기술연구)

  • Park, Suhyun;Kim, Hee-Gon;Hong, Jibum;Yoo, Jae-Hyung;Hong, James Won-Ki
    • KNOM Review
    • /
    • v.23 no.1
    • /
    • pp.34-42
    • /
    • 2020
  • Network Function Virtualization (NFV) environment can deal with dynamic changes in traffic status with appropriate deployment and scaling of Virtualized Network Function (VNF). However, determining and applying the optimal VNF deployment is a complicated and difficult task. In particular, it is necessary to predict the situation at a future point because it takes for the process to be applied and the deployment decision to the actual NFV environment. In this paper, we randomly generate service requests in Multiaccess Edge Computing (MEC) topology, then obtain training data for machine learning model from an Integer Linear Programming (ILP) solution. We use the simulation data to train the machine learning model which predicts the optimal VNF deployment in a predefined future point. The prediction model shows the accuracy over 90% compared to the ILP solution in a 5-minute future time point.

AI-based smart water environment management service platform development (AI기반 스마트 수질환경관리 서비스 플랫폼 개발)

  • Kim, NamHo
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.56-63
    • /
    • 2022
  • Recently, the frequency and range of algae occurrence in major rivers and lakes are increasing due to the increase in water temperature due to climate change, the inflow of excessive nutrients, and changes in the river environment. Abnormal algae include green algae and red algae. Green algae is a phenomenon in which blue-green algae such as chlorophyll (Chl-a) in the water grow excessively and the color of the water changes to dark green. In this study, a 3D virtual world of digital twin was built to monitor and control water quality information measured in ecological rivers and lakes in the living environment in real time from a remote location, and a sensor measuring device for water quality information based on the Internet of Things (IOT) sensor. We propose to build a smart water environment service platform that can provide algae warning and water quality forecasting by predicting the causes and spread patterns of water pollution such as algae based on AI machine learning-based collected data analysis.

Real2Animation: A Study on the application of deepfake technology to support animation production (Real2Animation:애니메이션 제작지원을 위한 딥페이크 기술 활용 연구)

  • Dongju Shin;Bongjun Choi
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.173-178
    • /
    • 2022
  • Recently, various computing technologies such as artificial intelligence, big data, and IoT are developing. In particular, artificial intelligence-based deepfake technology is being used in various fields such as the content and medical industry. Deepfake technology is a combination of deep learning and fake, and is a technology that synthesizes a person's face or body through deep learning, which is a core technology of AI, to imitate accents and voices. This paper uses deepfake technology to study the creation of virtual characters through the synthesis of animation models and real person photos. Through this, it is possible to minimize various cost losses occurring in the animation production process and support writers' work. In addition, as deepfake open source spreads on the Internet, many problems emerge, and crimes that abuse deepfake technology are prevalent. Through this study, we propose a new perspective on this technology by applying the deepfake technology to children's material rather than adult material.

A Motion-driven Rowing Game based on Teamwork of Multiple Players (다중 플레이어들의 팀워크에 기반한 동작-구동 조정 게임)

  • Kim, Hyejin;Shim, JaeHyuk;Lim, Seungchan;Goh, Youngnoh;Han, Daseong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.3
    • /
    • pp.73-81
    • /
    • 2018
  • In this paper, we present a motion-driven rowing simulation framework that allows multiple players to row a boat together by their harmonized movements. In the actual rowing game, it is crucial for the players to synchronize their rowing with respect to time and pose so as to accelerate the boat. Inspired by this interesting feature, we measure the motion similarity among multiple players in real time while they are doing rowing motions and use it to control the velocity of the boat in a virtual environment. We also employ game components such as catching an item which can accelerate or decelerate the boat depending on its type for a moment once it has been obtained by synchronized catching behaviors of the players. By these components, the players can be encouraged to more actively participate in the training for a good teamwork to produce harmonized rowing movements Our methods for the motion recognition for rowing and item catch require the tracking data only for the head and the both hands and are fast enough to facilitate the real-time performance. In order to enhance immersiveness of the virtual environment, we project the rowing simulation result on a wide curved screen.

Developing A Multi-dimensional Spatio-visual Information System (다차원기반 고정밀 공간영상정보 시스템 구축에 관한 연구)

  • Kim, Mi-Yun;Yeo, Wook-Hyun;Choi, Jin-Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.649-658
    • /
    • 2009
  • The recent emergence of the paradigm of new urban planning for building intelligent urban spaces, such as U-City and U-Eco City, of which the concept of ubiquitous technology is applied, requires high quality three-dimensional spatial information of the urban area. The aim of this study is to build a multi-dimensional spatio-visual information system that includes the solution for visualization, spatial information search, analysis, and evaluation by integrating various types of 3D-modeled spatial information concerning the large urban-size area based on the latest GIS application technology. The range of this study is the integration, visualization, and utilization of spatial information with the goal of building 3D virtual urban environment of high-quality and high-resolution by increasing the utilization of the systematic urban facilities in order to fully reflect the actual user's needs, using the aerial LiDAR data as the plan to overcome the limitations of the existing 3D urban modeling. By reproducing the virtual urban environment the most similar to the actual world through the mash-up of satellite images and aerial photos on the standard format of spatial information constituted of properties and signs, the system will be built with many analysis and utilization functions that support the view and sunlight analysis, various administrative tasks, as well as the decision making process of the city.

Design of Cloud-Based Data Analysis System for Culture Medium Management in Smart Greenhouses (스마트온실 배양액 관리를 위한 클라우드 기반 데이터 분석시스템 설계)

  • Heo, Jeong-Wook;Park, Kyeong-Hun;Lee, Jae-Su;Hong, Seung-Gil;Lee, Gong-In;Baek, Jeong-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.251-259
    • /
    • 2018
  • BACKGROUND: Various culture media have been used for hydroponic cultures of horticultural plants under the smart greenhouses with natural and artificial light types. Management of the culture medium for the control of medium amounts and/or necessary components absorbed by plants during the cultivation period is performed with ICT (Information and Communication Technology) and/or IoT (Internet of Things) in a smart farm system. This study was conducted to develop the cloud-based data analysis system for effective management of culture medium applying to hydroponic culture and plant growth in smart greenhouses. METHODS AND RESULTS: Conventional inorganic Yamazaki and organic media derived from agricultural byproducts such as a immature fruit, leaf, or stem were used for hydroponic culture media. Component changes of the solutions according to the growth stage were monitored and plant growth was observed. Red and green lettuce seedlings (Lactuca sativa L.) which developed 2~3 true leaves were considered as plant materials. The seedlings were hydroponically grown in the smart greenhouse with fluorescent and light-emitting diodes (LEDs) lights of $150{\mu}mol/m^2/s$ light intensity for 35 days. Growth data of the seedlings were classified and stored to develop the relational database in the virtual machine which was generated from an open stack cloud system on the base of growth parameter. Relation of the plant growth and nutrient absorption pattern of 9 inorganic components inside the media during the cultivation period was investigated. The stored data associated with component changes and growth parameters were visualized on the web through the web framework and Node JS. CONCLUSION: Time-series changes of inorganic components in the culture media were observed. The increases of the unfolded leaves or fresh weight of the seedlings were mainly dependent on the macroelements such as a $NO_3-N$, and affected by the different inorganic and organic media. Though the data analysis system was developed, actual measurement data were offered by using the user smart device, and analysis and comparison of the data were visualized graphically in time series based on the cloud database. Agricultural management in data visualization and/or plant growth can be implemented by the data analysis system under whole agricultural sites regardless of various culture environmental changes.

An Algorithm for Spot Addressing in Microarray using Regular Grid Structure Searching (균일 격자 구조 탐색을 이용한 마이크로어레이 반점 주소 결정 알고리즘)

  • 진희정;조환규
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.9
    • /
    • pp.514-526
    • /
    • 2004
  • Microarray is a new technique for gene expression experiment, which has gained biologist's attention for recent years. This technology enables us to obtain hundreds and thousands of expression of gene or genotype at once using microarray Since it requires manual work to analyze patterns of gene expression, we want to develop an effective and automated tools to analyze microarray image. However it is difficult to analyze DNA chip images automatically due to several problems such as the variation of spot position, the irregularity of spot shape and size, and sample contamination. Especially, one of the most difficult problems in microarray analysis is the block and spot addressing, which is performed by manual or semi automated work in all the commercial tools. In this paper we propose a new algorithm to address the position of spot and block using a new concept of regular structure grid searching. In our algorithm, first we construct maximal I-regular sequences from the set of input points. Secondly we calculate the rotational angle and unit distance. Finally, we construct I-regularity graph by allowing pseudo points and then we compute the spot/block address using this graph. Experiment results showed that our algorithm is highly robust and reliable. Supplement information is available on http://jade.cs.pusan.ac.kr/~autogrid.