• Title/Summary/Keyword: 가변 유동

Search Result 118, Processing Time 0.034 seconds

Effects of Variable Guide Vane Setting Angle on the Performance of Multi-Stage Axial Compressor (가변안내깃 설치각이 다단 축류압축기 성능에 미치는 영향)

  • Park, JunYoung;Seo, JeongMin;Lim, HyungSoo;Choi, Bumseok;Choi, Taewoo;Choi, Jaeho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.9-18
    • /
    • 2016
  • Generally the variable guide vane is used to secure the sufficient operating point in the off-design condition. In this study the inlet guide vane, 1st and 2nd stators in a multi-stage axial compressor are movable to obtain the operating range. So the effects of variable guide vane setting angle on the performance of 2.5 stage axial compressor were investigated at 70 % and 90 % conditions of nominal rotating speed in this paper. The steady-state and unsteady numerical analyses were conducted at each operating condition. The performance map, lost efficiency and flow fields were compared.

A Study on the Performance Prediction Method for an Axial Compressor with Variable Inlet Guide Vane (가변 입구 안내익이 있는 축류압축기의 성능예측 방법에 관한 연구)

  • Kim, Dong-Hyun;Kim, Sang-Jo;Kim, Kui-Soon;Son, Chang-Min;Kim, You-Il;Min, Seong-Ki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • In this study, numerical method, stage stacking method based on the result of numerical method and scaled stage stacking method have been applied to predict the performance of a multi-stage axial compressor with inlet guide vane. The results obtained through three different methods for off-design conditions were compared with performance test data. And the effect the angle of variable inlet guide vane was also investigated. The three-dimensional numerical simulation has been performed by using flow analysis program, $FLUENT^{TM}$ 6.3 and the performance prediction based on the stage stacking method has been performed with compressor analysis code from NASA.

Flow and Combustion Characteristics according Control Strategy of Variable Valve Duration System for Compression Ignition Engine (압축착화기관용 가변밸브 듀레이션(VVD)시스템의 제어전략에 따른 유동 및 연소성능 해석)

  • Cho, Insu;Kim, Wootaek;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.25 no.2
    • /
    • pp.45-50
    • /
    • 2020
  • Recently, global warming and environmental pollution are becoming more important, and fuel economy is becoming important. Each automobile company is actively developing various new technologies to increase fuel efficiency. CVVD(Continuously Variable Valve Duration) system means a device that continuously changes the rotational speed of the camshaft to change the valve duration according to the state of the engine. In this paper, VVT(Variable Valve Timing) and CVVD were applied to a single-cylinder diesel engine, and the characteristics of intake and exhaust flow rate and in-cylinder pressure characteristics were analyzed by numerical analysis. In order to analyze the effect of CVVD on the actual engine operation, the study was performed by setting the valve control and injection pressure as variables in two sections of the engine operating region. As a result, In the case of applying CVVD, the positive overlap with the exhaust valve is maintained, thus it is possible to secure the flow smoothness of air and increase the volumetric efficiency by improving the flow rate. The section 2 condition showed the highest peak pressure, but the pressure rise rate was similar to that of the VVT 20 and CVCD 20 conditions up to 40 bar due to the occurrence of ignition delay.

Heat Transfer Analysis for Variable Thrust Control System Using 1-Way Coupling (일방향 연계를 활용한 연속가변 추력제어 시스템의 열전달 해석)

  • Lee, JiHun;Jang, HanNa;Kim, GyuBin;Cho, JinYeon;Kawk, JaeSu;Ko, JunBok;Park, SungHan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.388-391
    • /
    • 2017
  • In this study, heat transfer analysis of variable thrust control system have been conducted by using commercial CFD code and FEM code. We Carried out computational fluid dynamics analysis to obtain the temperature and convective heat transfer coefficient of hot gas of variable thrust control system. Data are used as boundary condition for heat transfer analysis using mapping method. Temperature of O-ring for sealing was predicted

  • PDF

CFD Analysis on the Continuous and Variable Damping Characteristics of a Semi-Active Shock Absorber (반능동형 충격흡수기의 연속가변 감쇠특성에 대한 CFD 해석)

  • 윤준원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.101-108
    • /
    • 2004
  • Recently, a semi-active shock absorber has been taking interest because of its low cost and simple structure than the active one. CFD analysis has been conducted to investigate the continuous and variable damping characteristics of the semi-active shock absorber. Also, the flow resistance characteristics of a spool valve has been examined to identify individual parameters(namely, exponent and discharge coefficient) of pressure-flow rate relation needed for the accurate valve modeling. The flow field in the damping valve was simulated using the commercial code, CFX-5.3. The numerical results showed reasonable agreement with the experimental outputs. The pressure distribution with the variation of spool opening length and volume flow rate were discussed in detail. And the continuous and variable damping performance was found clearly. The individual parameters of spool valve were obtained as a function of orifice area. The exponent and discharge coefficient were fitted in with the first and the third polynomial respectively.

Performance Investigation of a Continuously Variable ER Damper for Passenger Vehicles (승용차용 연속가변 ER댐퍼의 성능연구)

  • Kim, K.S.;Chang, E.;Choi, S.B.;Cheong, C.C.;Suh, M.S.;Yeo, M.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.69-77
    • /
    • 1995
  • This paper presents performance investigation of a continuously variable ER(Electro-Rheological) damper for passenger vehicles. A dynamic model of the damper is formulated by incorporating electric field-dependent Bingham properties of the ER fluid. The Bingham properties are experimentally obtained through Couette type electroviscous measurement with respect to two different particle concentrations. The governing equation of the hydraulic model treating three components of fluid resistances;electrode duct flow, check valve flow and piston gap flow, is achieved via the bond graph method. A prototype ER damper is then designed and manufactured on the basis of parameter analysis. The damping forces of the system are experimentally evaluated by changing the intensity of the electric field, the particle concentration and the electrode gap.

  • PDF

A Study on the Variable Hysteresis Current Mode Control Method for Power Factor Improvement of the Single Phase Boost Converter (단상 부스터 콘버터의 입력역률 개선을 위한 가변 밴드폭 제어방식에 관한 연구)

  • 김철우;권순재;유동욱;박성준
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.3
    • /
    • pp.36-43
    • /
    • 1994
  • Many new electronic products are required to have a near unity power factor and a distortion free current input waveform. In this paper, single phase AC to DC Boost-Converter which is controlled with continuous conduction mode(CCM) is analyzed. Each parameter is determined for variable hysteresis current mode and real time simulation results showed high power factor possible. l(kW] boost converter was designed and constructed accordingly. Experimental results to load and parameter variations are well similar to the simulation results.

  • PDF

A Study on the Thrust Throttling Using Gas Injection in Swirl Injectors (기체주입을 이용한 와류형 분사기들에서의 가변추력 연구)

  • Lee, Wongu;Yoon, Youngbin;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.159-168
    • /
    • 2018
  • Thrust throttling in a liquid rocket engine can be implemented via several ways such as high pressure drop injector, dual manifold, multiple chamber, pintle injector, and gas injection. Thrust throttling using gas injection controls thrust by usually injecting inert gas into propellant through an aerator to reduce the propellant's bulk density. In this study, the outside-in aerator was used in the propellant line to create two phase flow. Closed-type, open-type, and screw-type bi-swirl coaxial injectors were utilized for investigating throttling characteristics such as pressure drop, mixture density, and discharge coefficient according to gas-liquid mass ratio.

An Experimental Study on the Mixing Flow Structure of Turbulent Cross Flow with Respect to the Ratio of Mass Flow Rate (난류충돌유동의 질량유량비에 따른 혼합유동구조에 관한 실험적 연구)

  • 이대옥;노병준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2150-2158
    • /
    • 1992
  • This study was carried out to investigate the flow structure and mixing process of a cross mixing flow formed by two round jets with respect to the ratio of mass flow rate. This flow configuration is of great practical relevance in a variety of combustion systems, and the flow behaviour of a cross jet defends critically on the ratio of mass flow rate and the cross angle. The mass flow rate ratios of two different jets were controlled as 1.0, 0.8, 0.6, and 0.4, and the crossing angle of two round jets was fixed at 45 degree. The velocities issuing from jet nozzle with an exit diameter of 20mm were adjusted to 40m/s, 32m/s, 24m/s, and 16m/s, and the measurements have been conducted in the streamwise range of $1.1X_0$to $2.5X_0$ by an on-line measurement system consisted of a constant temperature type two channel hot-wire anemometry connected to a computer analyzing system. The original air flow was generated by a subsonic wind tunnel with reliable stabilities and uniform flows in the test section. For the analysis of the cross mixing flow structure in the downstream region after the cross point, the mean velocity profiles, the resultant velocity contours, and the three-dimensional profiles depending upon the mass flow rate ratio have been concentrately studied.

A Study on the Flow-Rate Analysis of Variable Section Sweeping Auger (가변단면 Sweeping Auger의 유동량 해석에 관한 연구)

  • Choi, Kab-Yong;Oh, Tae-Il;Shin, Sung-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.131-134
    • /
    • 2009
  • 본 연구는 일체형 곡물 건조/저장 시스템 개발에 사용되는 Sweeping Auger의 성능 개선을 위하여 추진되었다. 이를 위하여 본 연구에서는 Variable Section Sweeping Auger를 제안하고 그 특성을 해석할 수 있는 수식모형을 개발하였다. 이를 통하여 곡물 건조 저장시스템의 성능개선에 이바지 하고자 한다.

  • PDF