• 제목/요약/키워드: 가뭄정보

검색결과 361건 처리시간 0.016초

airGRdatassim을 이용한 앙상블 기반 수문자료동화 기법의 비교 및 불확실성 평가 (Comparative assessment and uncertainty analysis of ensemble-based hydrologic data assimilation using airGRdatassim)

  • 이가림;이송희;김보미;우동국;노성진
    • 한국수자원학회논문집
    • /
    • 제55권10호
    • /
    • pp.761-774
    • /
    • 2022
  • 가뭄과 홍수의 예측, 기후변화가 유역 유출량, 더 나아가 수질 및 생태계에 미치는 영향의 정확한 분석을 위해서는 수문 모의 과정의 불확실성을 정량화하고 최소화하기 위한 노력이 필요하다. 수문자료동화는 수문모형의 상태량이나 매개변수를 갱신(update)하여 모의 초기 조건의 가장 가능성 있는 추정치를 생성하는 기법으로, 실시간 관측 정보를 이용하여 예측 정확도를 향상시킬 수 있는 방법이다. 본 연구에서는 airGRdatassim 모형을 이용하여 앙상블 기반 순차 자료동화 기법인 앙상블 칼만 필터와 파티클 필터로 용담댐 유역에 대해 일 유출을 모의하고, 자료동화 기법별 특성을 비교 및 분석하였다. 모의 결과, Kling-Gupta efficiency (KGE) 지표가 자료동화 적용 전 0.799에서 앙상블 칼만 필터와 파티클 필터 적용시 각각 0.826, 0.933으로 향상되었다. 또한 기상 강제력 노이즈의 범위, 갱신 대상 상태량 설정, 앙상블 수 등 수문자료동화의 설정과 관련된 하이퍼-매개변수(hyper-parameter)의 불확실성이 모의 예측 성능에 미치는 영향을 분석하였다. 강수 및 잠재 증발산 강제력의 오차 범위에 대한 민감도 분석 결과, 모든 모의 범위에서 파티클 필터가 앙상블 칼만 필터보다 예측 성능이 우수하였다. 파티클 필터는 기상 강제력 오차 크기가 작을수록 모의 성능이 향상되었으며, 앙상블 칼만 필터는 상대적으로 오차가 큰 경우 최적 성능이 확인되었다. 한편, 자료동화시 갱신되는 상태량의 종류를 줄일수록 자료동화에 의한 모의 성능은 감소하였다. 본 연구의 모의 실험 결과는 앙상블 자료동화를 이용하여 일 유출 모의 정확도 향상이 가능하지만, 최적 성능을 발휘하기 위해서는 수문자료동화 기법별 하이퍼-매개변수의 적정한 조정이 필요함을 함의한다.