• 제목/요약/키워드: 가려진 물체 추론

검색결과 5건 처리시간 0.023초

서비스 로봇의 물체 탐색 성능 향상을 위한 베이지안 네트워크 결합 기반 물체 관계 모델링 (Object Relationship Modeling based on Bayesian Network Integration for Improving Object Detection Performance of Service Robots)

  • 송윤석;조성배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.195-198
    • /
    • 2005
  • 최근 실내 환경에서 영상 정보를 사용하여 로봇이 서비스를 제공하기 위한 연구가 활발하다. 과거 영상 처리 접근 방법은 산업 환경과 같은 예측 가능한 환경을 바탕으로 미리 정의된 기하학적 모델을 통해 상황을 인식하였기에, 이를 실내 환경과 같은 가변적인 환경에 적용할 시 성능이 저하된다. 이에 지식을 기반으로 불확실성을 해결하여 정확도를 향상 시킴으로써 영상 인식 성능을 높이기 위한 다양한 연구가 진행되어 왔다. 본 논문에서는 실내에서 활동하는 서비스 로봇의 물체인식 성능을 향상시키기 위해, 대상 물체가 다른 물체에 의해서 가려져 있는 경우 대상 물체의 존재 여부를 추론하기 위한 베이지안 네트워크 모델링 방법을 제안한다. 제안하는 방법은 작은 단위로 설계된 베이지안 네트워크들을 상황에 따라 결합하여 추론 모델이 구성되게 하였고 물체간의 관계를 효과적으로 표현하고 초기 확률 값을 단일하게 유지하기 위해 제안된 확률 값 설정 방법을 사용하였다. 실험은 물체 관계를 추론하는 모듈의 성능을 검증하기 위해 수행되었는데, 5가지 장소에서 82.8$\%$의 정확도를 보여주었다.

  • PDF

로봇의 효과적인 서비스를 위해 베이지안 네트워크 기반의 실내 환경의 가려진 물체 추론 (Reasoning Occluded Objects in Indoor Environment Using Bayesian Network for Robot Effective Service)

  • 송윤석;조성배
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제12권1호
    • /
    • pp.56-65
    • /
    • 2006
  • 최근 서비스 로봇에 대한 연구가 여러분야에서 활발해지며, 노인 보조와 같은 실내 서비스를 위한 연구가 많이 이루어지고 있다. 이 때 로봇이 효과적이고 정확한 서비스를 하기 위해서 물체와 상황을 적절하게 인식하는 것은 중요하다. 전통적인 물체 인식 방법은 미리 정의된 기하학적 모델에 기반하였으나 이런 접근 방법은 대상 물체가 다른 물체에 가려져 보이지 않는 상황 둥 불확실성을 포함하는 실내환경에서는 한계가 있다 본 논문에서는 로봇의 효과적인 물체 탐색을 위해 대상이 되는 물체의 존재 가능성을 추론하기 위한 베이지안 네트워크 모델을 제안한다. 이를 위해 활동별로 물체간의 관계를 모델링하여 고정되어 있지 않은 환경에 보다 유연하게 적용될 수 있게 하였다. 전체적인 구조는 공통-원인 구조를 물체간의 관계를 나타내는 단위로 사용하여 이를 결합해가며 구성되는데 이러한 방법은 베이지안 네트워크 설계를 효과적이게 한다. 제안하는 베이지안 네트워크 모델을 검증하기 위해 두 개의 베이지안 네트워크의 성능을 실험을 통해 검사하였는데 각각 $86.5\%$$89.6\%$의 정확도를 보였다.

서비스 로봇의 가려진 물체 인식을 위한 온톨로지 기반 동적 베이지안 네트워크 모델링 및 추론 (Dynamic Bayesian Network Modeling and Reasoning Based on Ontology for Occluded Object Recognition of Service Robot)

  • 송윤석;조성배
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제13권2호
    • /
    • pp.100-109
    • /
    • 2007
  • 서비스 로봇의 물체 인식은 배달, 심부름 같은 로봇이 수행하는 대부분의 서비스를 위해 매우 중요하다. 기존의 방법은 산업 환경에서 기하학적 모델에 기반 하여 물체를 인식하였으나, 환경 조건이 변화하고 로봇의 이동이 발생하는 실내 환경에서는 로봇의 위치에 따라 영상 속에서 물체가 가려져 있거나 작을 수 있어 인식이 잘되지 않는 상황이 발생한다. 이러한 불확실한 상황을 해결하기 위해 본 논문에서는 영상에서 인식된 물체들을 컨텍스트 정보로 사용하여 관심 있는 물체의 존재를 추론하기 위한 방법을 제안한다. 이를 위해 베이지안 네트워크와 온톨로지를 함께 사용하여 확률적 프레임 안에서 도메인 지식을 모델링하기 위한 방법과 추론 모델의 확장을 위해 동적으로 베이지안 네트워크를 생성하고 추론하는 방법을 제안한다. 실험을 통해서 이러한 방법의 성능을 검증하였고 확률적 모델 안에서 귀납적 추론이 갖는 장점을 확인할 수 있었다.

서비스 로봇의 물체 탐색 성능 향상을 위한 베이지안 네트워크 결합 기반 물체 관계 모델링 (Object Relationship Modeling based on Bayesian Network Integration for Improving Object Detection Performance of Service Robots)

  • 송윤석;조성배
    • 한국지능시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.817-822
    • /
    • 2005
  • 최근 실내 환경에서 로봇의 서비스를륵 위해 영상 정보를 사용하기 인한 인구가 활발하다. 과거의 영상 처리 전근 방법은 미리 정의된 기하학적 모델에 기반 하기에, 이를 실내 환경과 같은 가변적인 환경에 적용할 시 성능이 저하된다. 이에 지식을 기반으로 불확실성을 해결하여 영상 인식 성능을 높이기 위한 다양한 연구가 진행되어 왔다. 본 논문에서는 실내에서 활동하는 서비스 로봇의 물체 인식 성능을 향상시키기 위해, 대상 물체가 다른 물체에 의서 가려져 있는 경우 대상물체의 존재 여부를 추론하기 위한 베이지안 네트워크 모델링 방법을 제안한다. 제안하는 방법은 물체간이 관계를 모델링하여 발견된 물체를 통해 대상 물체를 추론할 수 있게 하였다. 이를 위해 작은 규모의 베이지안 네트워크(프리미티브 베이지안 네트워크)를 위한 설계 방법을 정의하고 이를을 다시 상황에 맞게 결합하였다. 실험은 설계된 모델의 성능을 검증하기 위해 수행되었는데, 5가지 장소에서 $82.8\%$의 정확도를 보여주었다.

이동 로봇의 물체 인식과 주행을 위한 로봇 지식 체계 (Robot Knowledge Framework of a Mobile Robot for Object Recognition and Navigation)

  • 임기현;서일홍
    • 전자공학회논문지CI
    • /
    • 제44권6호
    • /
    • pp.19-29
    • /
    • 2007
  • 본 논문에서는 이동 로봇의 다계층으로 로봇 지식 체계를 구축함으로써 실생활 환경에서 잡음이 섞인 센서 때문에 소실되거나 잃어버리거나 가려진 정보를 찾아낼 수 있는 추론(inference)할 수 있는 로봇 지식을 구현하고자 한다. 로봇 지식 체계는 4개의 지식 계층과 2종류의 규칙 (rule)과 공리 (Axiom)으로 구성되어 있다. 인지, 모델, 정황, 활동의 4 개의 지식 계층 (KClass)으로 구성된다. 각각의 지식 계층은 3개의 지식 층 (KLevel)과 3개의 온톨로지 층 (OLayer)으로 구성된다. 3개의 지식층은 하위 층, 중간, 상위 지식층이고, 3 개의 온톨로지 층은 메타 온톨로지, 온톨로지 스키마, 온톨로지 인스턴스 층이다. 공리는 각 온톨로지 층 내에서 온톨로지 요소인 개념간의 관계를 표현하고, 2종류의 규칙은 서로 다른 온톨로지 층간, 서로 다른 지식 계층 간의 연관을 각각 표현한다. 따라서 이러한 특징의 로봇의 하위 수준의 센서 정보에서 상위 수준의 의미 정보를 통합 할 수 있도록 하고, 통합된 지식을 가지고 이웃한 층간의 단방향 추론 및 몇 개의 층들 간의 양방향 추론을 통해 불확실하고 부분적인 정보에 대한 질문에 응답할 수 있다. 이러한 우리의 로봇 지식 체계의 유용성이 물체 인식과 주행을 위한 여러 실험을 통하여 검증할 수 있다.