• Title/Summary/Keyword: 가려진 물체 추론

Search Result 5, Processing Time 0.019 seconds

Object Relationship Modeling based on Bayesian Network Integration for Improving Object Detection Performance of Service Robots (서비스 로봇의 물체 탐색 성능 향상을 위한 베이지안 네트워크 결합 기반 물체 관계 모델링)

  • Song, Youn-Suk;Cho, Sung-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.195-198
    • /
    • 2005
  • 최근 실내 환경에서 영상 정보를 사용하여 로봇이 서비스를 제공하기 위한 연구가 활발하다. 과거 영상 처리 접근 방법은 산업 환경과 같은 예측 가능한 환경을 바탕으로 미리 정의된 기하학적 모델을 통해 상황을 인식하였기에, 이를 실내 환경과 같은 가변적인 환경에 적용할 시 성능이 저하된다. 이에 지식을 기반으로 불확실성을 해결하여 정확도를 향상 시킴으로써 영상 인식 성능을 높이기 위한 다양한 연구가 진행되어 왔다. 본 논문에서는 실내에서 활동하는 서비스 로봇의 물체인식 성능을 향상시키기 위해, 대상 물체가 다른 물체에 의해서 가려져 있는 경우 대상 물체의 존재 여부를 추론하기 위한 베이지안 네트워크 모델링 방법을 제안한다. 제안하는 방법은 작은 단위로 설계된 베이지안 네트워크들을 상황에 따라 결합하여 추론 모델이 구성되게 하였고 물체간의 관계를 효과적으로 표현하고 초기 확률 값을 단일하게 유지하기 위해 제안된 확률 값 설정 방법을 사용하였다. 실험은 물체 관계를 추론하는 모듈의 성능을 검증하기 위해 수행되었는데, 5가지 장소에서 82.8$\%$의 정확도를 보여주었다.

  • PDF

Reasoning Occluded Objects in Indoor Environment Using Bayesian Network for Robot Effective Service (로봇의 효과적인 서비스를 위해 베이지안 네트워크 기반의 실내 환경의 가려진 물체 추론)

  • Song Youn-Suk;Cho Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.1
    • /
    • pp.56-65
    • /
    • 2006
  • Recently the study on service robots has been proliferated in many fields, and there are active developments for indoor services such as supporting for elderly people. It is important for robot to recognize objects and situations appropriately for effective and accurate service. Conventional object recognition methods have been based on the pre-defined geometric models, but they have limitations in indoor environments with uncertain situation such as the target objects are occluded by other ones. In this paper we propose a Bayesian network model to reason the probability of target objects for effective detection. We model the relationships between objects by activities, which are applied to non-static environments more flexibly. Overall structure is constructed by combining common-cause structures which are the units making relationship between objects, and it makes design process more efficient. We test the performance of two Bayesian networks for verifying the proposed Bayesian network model through experiments, resulting in accuracy of $86.5\%$ and $89.6\%$ respectively.

Dynamic Bayesian Network Modeling and Reasoning Based on Ontology for Occluded Object Recognition of Service Robot (서비스 로봇의 가려진 물체 인식을 위한 온톨로지 기반 동적 베이지안 네트워크 모델링 및 추론)

  • Song, Youn-Suk;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.2
    • /
    • pp.100-109
    • /
    • 2007
  • Object recognition of service robots is very important for most of services such as delivery, and errand. Conventional methods are based on the geometric models in static industrial environments, but they have limitations in indoor environments where the condition is changable and the movement of service robots occur because the interesting object can be occluded or small in the image according to their location. For solving these uncertain situations, in this paper, we propose the method that exploits observed objects as context information for predicting interesting one. For this, we propose the method for modeling domain knowledge in probabilistic frame by adopting Bayesian networks and ontology together, and creating knowledge model dynamically to extend reasoning models. We verify the performance of our method through the experiments and show the merit of inductive reasoning in the probabilistic model

Object Relationship Modeling based on Bayesian Network Integration for Improving Object Detection Performance of Service Robots (서비스 로봇의 물체 탐색 성능 향상을 위한 베이지안 네트워크 결합 기반 물체 관계 모델링)

  • Song Youn-Suk;Cho Sung-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.7
    • /
    • pp.817-822
    • /
    • 2005
  • Recently tile study that exploits visual information for tile services of robot in indoor environments is active. Conventional image processing approaches are based on the pre-defined geometric models, so their performances are likely to decrease when they are applied to the uncertain and dynamic environments. For this, diverse researches to manage the uncertainty based on the knowledge for improving image recognition performance have been doing. In this paper we propose a Bayesian network modeling method for predicting the existence of target objects when they are occluded by other ones for improving the object detection performance of the service robots. The proposed method makes object relationship, so that it allows to predict the target object through observed ones. For this, we define the design method for small size Bayesian networks (primitive Bayesian netqork), and allow to integrate them following to the situations. The experiments are performed for verifying the performance of constructed model, and they shows $82.8\%$ of accuracy in 5 places.

Robot Knowledge Framework of a Mobile Robot for Object Recognition and Navigation (이동 로봇의 물체 인식과 주행을 위한 로봇 지식 체계)

  • Lim, Gi-Hyun;Suh, Il-Hong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.6
    • /
    • pp.19-29
    • /
    • 2007
  • This paper introduces a robot knowledge framework which is represented with multiple classes, levels and layers to implement robot intelligence at real environment for mobile robot. Our root knowledge framework consists of four classes of knowledge (KClass), axioms, rules, a hierarchy of three knowledge levels (KLevel) and three ontology layers (OLayer). Four KClasses including perception, model, activity and context class. One type of rules are used in a way of unidirectional reasoning. And, the other types of rules are used in a way of bi-directional reasoning. The robot knowledge framework enable a robot to integrate robot knowledge from levels of its own sensor data and primitive behaviors to levels of symbolic data and contextual information regardless of class of knowledge. With the integrated knowledge, a robot can have any queries not only through unidirectional reasoning between two adjacent layers but also through bidirectional reasoning among several layers even with uncertain and partial information. To verify our robot knowledge framework, several experiments are successfully performed for object recognition and navigation.