• Title/Summary/Keyword: 가동적 지진응답실험

Search Result 4, Processing Time 0.019 seconds

On-line Tests on Collapse Mode Controlled Steel Frame (붕괴모드 컨트롤형 철골조 시스템의 온라인 지진응답실험)

  • Lee, Seung-Jae;Oh, Sang-Hoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.1
    • /
    • pp.47-52
    • /
    • 2009
  • In this study, it is demonstrated by a pseudo dynamic earthquake response tests that combination of semi-rigid partial-strength using the high performance-high strength bolts and inter-story hysteretic damper system creates a fairly good structural system that satisfies not only the serviceability requirement under moderate earthquakes but unexpected failure of damper system.

  • PDF

Pseudo Dynamic Earthquake Response Tests on Steel Frames with Slit Plate Damper (슬릿형 댐퍼를 부착한 철골조 시스템의 가동적 지진응답실험)

  • Lee, Seung-Jae;Park, Jae-Seong;Oh, Sang-Hoon;Ryu, Hong-Sik
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.145-150
    • /
    • 2008
  • The purpose of this study is to propose damper system which is easy to design, which can ensure against risks, and to verify earthquake response characteristics. For this study, the pseudo dynamic earthquake response tests carried out for steel frames with two types of seismic and vibration control device. As a result, in case of using the slit plate damper as a vibration control device proposed by this study, the damper having higher stiffness than main-structure turned to the state of plasticity by little displacement has been proved to be able to absorb earthquake energy.

  • PDF

Shaking Table Test of Isolated EDG Model (면진된 모형 비상디젤발전기의 지진응답 실험)

  • Kim, Min-Kyu;Choun, Young-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.33-42
    • /
    • 2007
  • In this study, for research on an improvement of the seismic safety of an EDG system, a small scale EDG system was manufactured. For the isolation system, the Coil Spring-Viscous Damper systems were selected. For the shaking table test, 3 kinds of seismic motions were selected which had different frequency contents. In this study, the isolation effects were different and they depended on the input seismic motion. In the case of an NRC earthquake which had low fiequency contents, the isolation effects of the horizontal direction were 20%. But for the seismic motions which had high fiequency contents, the isolation effects were $50{\sim}70%$. In the case of the vertical direction, poor isolation effects were observed. It was because the design properties and the real properties of the isolation system were a little different.

Seismic response characteristics of the hypothetical subsea tunnel in the fault zone with various material properties (다양한 물성의 단층대를 통과하는 가상해저터널의 지진 시 응답 특성)

  • Jang, Dong In;Kwak, Chang-Won;Park, Inn-Joon;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1061-1071
    • /
    • 2018
  • A subsea tunnel, being a super-sized underground structure must ensure safety at the time of earthquake, as well as at ordinary times. At the time of earthquake, in particular, of a subsea tunnel, a variety of response behaviors are induced owing to relative rigidity to the surrounding ground, or difference of displacement, so that the behavior characteristics can be hardly anticipated. The investigation aims to understand the behavior characteristics switched by earthquake of an imaginary subsea tunnel which passes through a fault zone having different physical properties from those of the surrounding ground. In order to achieve the aim, dynamic response behaviors of a subsea tunnel which passes through a fault zone were observed by means of indoor experiments. For the sake of improved earthquake resistance, a shape of subsea tunnel to which flexible segments have been applied was considered. Afterward, it is believed that a D/B can be established through 3-dimensional earthquake resistance interpretation of various grounds, on the basis of verified results from the experiments and interpretations under various conditions. The present investigation performed 1 g shaking table test in order to verify the result of 3-dimensional earthquake resistance interpretation. A model considering the similitude (1:100) of a scale-down model test was manufactured, and tests for three (3) Cases were carried out. Incident seismic wave was introduced by artificial seismic wave having both long-period and short-period earthquake properties in the horizontal direction which is rectangular to the processing direction of the tunnel, so that a fault zone was modeled. For numerical analysis, elastic modulus of the fault zone was assumed 1/5 value of the modulus of individual grounds surround the tunnel, in order to simulate a fault zone. Resultantly, reduced acceleration was confirmed with increase of physical properties of the fault zone, and the result from the shaking table test showed the same tendency as the result from 3-dimensional interpretation.